数论基础 辗转相除 扩展欧几里德

辗转相除:

辗转相除,又称为欧几里德算法,用于求解俩个数值的最大公约数,原理如下:
 gcd(a,b) = gcd(b,a%b) = gcd(a%b,(a%b)%b) ... = gcd(c,0) = c;

一般经过俩次的递归之后,第一个参数就小于原来的一半,所以不用但是栈溢出的情况。
int gcd(int a,int b){
    if(b==0)
        return a;
    return gcd(b,a%b);
}

求解n个数值的最小公倍数,即求解n个数值的最大公约数即可。lcm(a,b) = a*b / gcd(a,b);
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);   //辗转相除 gcd(a,b)=gcd(b,a%b) 结束条件是 gcd(a,0)=a
}
//两个数的最小公倍数 是两个数的乘积除以两个数的最大公约数
int lcm(int a,int b){
    int result = gcd(a,b);
    return (a*b)/(result);
}
int main()
{
    int n;
    int res;
    int m;
    while(scanf("%d",&n)!=EOF){
        res = 1;
        while(n--){
        scanf("%d",&m);
        res = lcm(res,m);
        }
        printf("%d\n",res);
    }
    return 0;
}

扩展欧几里德:

对应于ax+by = gcd(a,b) 存在着x,y使得成立,x,y不一定是正数。
推导:
ax+by = gcd(a,b);
    if b == 0
        a*x + 0*y = gcd(a,0) = a;
        => x = 1; y = 0;
    if a*b != 0
        a*x1 + b*y1 = gcd(a,b) = b*x2 + (a%b)*y2
        a%b = a-a/b*b
        a*x1 + b*y1 = b*x2 +(a-[a/b]*b)*y2
        a*x1 + b*y1 = a*y2 + b*(x2-[a/b]*y2)
        ==> x1 = y2
            y1 = x2-(a/b)*y2
            x1,y1是基于x2,y2的 递归总会出现b==0的时候

代码:
 int extgcd(int a,int b,int &x,int &y){
        if(b==0){
            x = 1;
            y =0;
            return a;
        }else{
            int res = extgcd(b,a%b,x,y);
            int tmp = x;
            x = y;
            y = tmp-(a/b)y;
            return res;
        }
    }

用扩展欧几里德可以判断 ax+by=c 是否存在着整数解
当ax+by=gcd(a,b)的成立且解为x,y 所以就是当c是gcd(a,b)的整数倍的时候,存在着解,解为xc/gcd(a,b),yc/gcd(a,b)
 bool linear_equation(int a,int b,int c,int &x,int &y){
        int d = extgcd(a,b,x,y);
        if(c%d)
            return false;
        int k = c/d;
        x *= k;
        y *= k;
        cout<<"x="<<x<<" "<<"y="<<y<<endl;
        return true;
    }
main()函数:
int main(){
    int a,b,c,x,y;
    cin>>a>>b>>c;
    int result = extgcd(a,b,x,y);
    cout<<result<<endl;
    bool flag =linear_equation(a,b,c,x,y);
    if(flag)
        cout<<"answer exit"<<endl;
    else
        cout<<"No answer"<<endl;
}

样例: 模线性方程 
ax和b(mod)n同余 也就是a%n = b%n 所以存在着n使得 a-b = ny 原来方程变为ax - b = ny
可得:ax-ny = b; 当b=1的时候,也即gcd(a,n)=1,1/gcd(a,n)有解 说明a,n必须互素 也即gcd(a,n)=1成立的时候存在着唯一解。

模运算公式:
(a+b)mod n = ((a mod n)+(b mod n)) mod n
(a-b)mod n = ((a mod n)-(b mod n)+n) mod n
(a*b)mod n = ((a mod n)*(b mod n)) mod n

大整数取模
根据上面的性质:1234 =( ((1*10+2)*10)+3)*10+4.......大数表示方法 mod m;
代码:
int main(){
    int m;
    int ans = 0;
    scanf("%s%d",n,&m);
    int len = strlen(n);
    for(int i=0;i<len;i++)
        ans = (int)(((long long)ans*10+n[i])%m);
   printf("%d\n",ans);
   return 0;
}



  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值