同余 congruence of squares

同余理论是初等数论的重要组成部分,通过它我们可以简便地论证某些整除性的问题。德国数学家高斯最早引用了同余的概念与符号。同余不仅在数学竞赛中扮演重要角色,在数论研究中也具有广泛的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:http://blog.csdn.net/leonharetd/article/details/12918659

数学上,两个整数除以同一个整数,若得相同余数,则二整数同余(英文:Modular arithmetic;德文:Kongruenz)。同余理论常被用于数论中。最先引用同余的概念与符号者为德国数学家高斯

同余

同余

同余理论是初等数论的重要组成部分,是研究整数问题的重要工具之一,利用同余来论证某些整除性的问题是很简便的.同余是数学竞赛的重要组成部分.

两个整数a,b,若它们除以整数m所得的余数相等,则称a与b对于m同余或a同余于b模m

记作a ≡ b (mod m)
读作a同余于b模m,或读作a与b关于模m同余。
比如 26 ≡ 2 (mod 12)
【定义】设m是大于1的正整数,a,b是整数,如果m|(a-b),则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值