在矩阵基本运算的基础上,Numpy的Linalg库可以满足大多数的线性代数运算。
1. 矩阵的行列式
import numpy as np
# n阶方阵的行列式运算
A = mat([[1,2,3],[4,5,6],[7,8,9]])
print np.linalg.det(A) # 方阵的行列式
2.矩阵的逆
invA = np.linalg.inv(A)
print invA
3.矩阵的转置
AT = A.T
AT2 = A.transpose()
在矩阵基本运算的基础上,Numpy的Linalg库可以满足大多数的线性代数运算。
1. 矩阵的行列式
import numpy as np
# n阶方阵的行列式运算
A = mat([[1,2,3],[4,5,6],[7,8,9]])
print np.linalg.det(A) # 方阵的行列式
2.矩阵的逆
invA = np.linalg.inv(A)
print invA
3.矩阵的转置
AT = A.T
AT2 = A.transpose()
4085
1483

被折叠的 条评论
为什么被折叠?