高手程序员的进阶之路

前言

你是不是觉得作为程序员的你,每天工作如此繁忙,还怎么抽时间进行学习?如果有时间学习,我该学习些什么?以及怎么学。

我以前从事纯软件开发,从来没有学过AI算法相关知识,但通过在职的一年业余时间,掌握了传统机器学习算法和AI深度算法,进入到图像AI识别领域分别从事算法开发和AI应用工程师。期间就是靠着业余时间自学AI技术而成功转型。在这里分享下我的学习经验。

为什么要持续学习

企业不是让你来学习的,而是让你来解决问题的。所以平时在工作中几乎没有学习时间。工作中积累的更多是在已有的技能上实践和积累经验,缺乏新理论知识的输入,更大概率只能让你成为熟手,而非高手。高手都是在做中学,抽时间学。在IT领域,技术迭代非常快,特别在AI时代,经验折旧周期大大缩短。但这也是咱们程序员的优势。不只是IT领域,在其他领域,技术迭代速度也是大大加快了。 我们本来就习惯了技术快速淘汰的局面反而比其他行业更能抵抗技术冲击。在AI时代,几乎所有的领域的格局都会被颠覆一遍。我们只是时间来得比其他行业更早。但按照现在的AI更新速度,时间估计差得不多超过几年时间。

  • 前端从 jQuery 到 React/Vue 再到现在的 Web Components,仅用了10年;
  • 后端从单体架构到微服务、云原生(K8s+容器化),再到最近的 Serverless,迭代周期缩短至3-5年;

如果不学习,3年后可能连团队新引入的工具都“看不懂文档”,5年后可能被更熟悉新技术的同事替代。

学习的本质是什么?是为了提升能解决问题的“不可替代性”。这里有两个关键词,一个是解决问题,一个是不可替代。如果不明白为什么学习,而因为学习焦虑而胡乱去学习简单没什么门槛的知识,或者学习和自己技术栈无关的知识,即使学习能力很强,学到的内容不解决实际问题,或和别人雷同拉不开差距,提升不了不可替代性,迟早也是要被淘汰。我身边有很多看似很勤奋的同事,基本都是985,211,他们有的会去疯狂地看一篇又一篇的论文,而真正项目要落地的时候还是拿不出一个像样的方案,有的会去刷一遍又一遍的算法题,到头来也只是更熟练地使用过时的传统机器学习算法,比不过深度模型的效果,还有的会去研究做好ppt的各种小技巧,却不知现在AI早已可以一键生成大量精美的PPT报告。虽然他们似乎很勤奋,也不缺乏学习能力,却依然没有让他们在职场上得到晋升,甚至精力分散连基本工作都没做好。这就是典型的用战术上的勤奋,掩盖了战略上的懒惰。所以,选择学什么比怎么学更重要。

学什么

那我们应该学什么?我总结了一套方法,叫”短期练功夫,长期练内功“。

所谓功夫,就是短期高价值,能把当前工作做好的工程能力,其中包括需求分析、技术栈、工具链使用、协作开发和测试,和性能优化。这是每个项目都必须经历的一套完整流程。程序员80%的工作时间花在这上面,提升工程能力可以让我们更高效率更高质量地完成工作任务提早下班。当我学会了熟练使用git来提交代码管理版本之后,原本每次提交都需要花上半个小时比对差异解决冲突,现在基本只需要5分钟就能解决。也不会像以前本地有多个版本备份,时间长了多得连自己都记不清是哪个版本了。文件里也不会再留下那些可能会回退担心删掉找不回来的注释代码了。

上述的内容,除了技术栈,其他可以进行快速学习。因为技术栈是一块大头,内容多,知识广,需要花时间进行知识晶体的构建。
所谓内功,就是指高价值但长期才能看到成效的能力。要根据未来的发展路线来制定。但大体就是技术专家和管理者两种路线。创业和转行跨度比较大,这里先不讨论。技术专家需要把技术基础大得更牢,如计算机科学的基础理论:数据结构与算法、操作系统、网络协议、计算机组成原理和设计模式。管理者需要加强软技能如沟通能力、项目管理能力和行业认知。同时,无论是技术专家还是管理者,都要对前沿领域有一个敏锐感知,这是保持自己核心竞争力的重要手段。(想要职业发展路线可以在评论区打上666)

学习资料的选择

详细内容我会专门出一期视频讲解。先说结论哈,前期选容易入门的,最好有人讲解的视频类教程,后期选知名度高的书籍打牢基础。千万不要一上来就去选知乎、csdn一度好评的大佬写的书,如学习深度学习一开始就看国外《深度学习》花书,
在这里插入图片描述

我一开始啃完全啃不动,差点被劝退,而是应该先看吴恩达网上的深度学习专项视频教程。
在这里插入图片描述

因为一开始有获得感成就感才能坚持下去。

学习时间分配

有人说,这么多内容,不知道怎么分配学习时间。根据实践经验,短期功夫和长期内功可以按照前期8:2的比例,等功夫修炼得差不多的时候,就要增加长期内功的比例,慢慢变成5:5,最后变成2:8反过来。还有一种方法,就是借助AI给你参考答案。这是我问AI给我的建议,看了非常受用,直接按照它的建议来做省心省力。

精力恢复

还有人说,上班太耗神了,精力不足。这要分清楚是身体物理性疲劳、认知疲劳还是情绪疲劳。不同类型的表现,应对方式就不同。如果是身体物理性疲劳,就去散散步走动走动,这可能是大脑久坐供血不足。无论是领导还是同事,都喜欢吃完饭后散散步,一个是为了促进消化,还有个原因其实就是缓解大脑疲劳。如果出现很大的困意,那建议还是赶紧小憩一会,睡觉是缓解身体疲劳最好的方式。如果是认知疲劳,可以选择放空大脑,让大脑真正停止输入,或者做点其他类型的脑力认知活动,调用不同的脑神经元。比如工作时间做了很长时间的开发编程,调动了逻辑思维,那业余时间可以学习沟通或阅读行业前沿新闻,用下语言脑。还可以做下间歇性运动,缓解;而情绪疲劳,可以听下音乐,进行正念冥来缓解负面情绪。我们的负面情绪,其实大部分来自于工作压力中对未来不确定性的事情上的担忧和焦虑。试想以下,如果你的遇到的烦心工作或生活困难,变成了你以前解决过的相同问题,是不是压力瞬间就小了很多。如果不去想象未来,只专注当下,焦虑感会小很多。大脑在静息状态下会思维漫游放空,进入一种叫DMN抑制默认模式网络的状态,容易引发过去懊悔或未来担忧。正念能调动大脑任务激活网络,将注意力锚定在当下,减少DMN活跃度,从而降低焦虑相关思维。把注意力集中在身体上,或把注意力集中在眼前的咖啡上,都能有效进行正念。

我的建议是,不需要额外占用休息时间。而是利用业余时间进行休息。比如你制定了一个1小时的学习计划,那就抽出10-20分钟进行对应的休息。剩余的时间再用来学习。这种弹性的劳逸结合能让学习坚持下去。学习最忌就是两天打鱼三天晒网,千万不要用力过度了。一周工作58=40小时,而不是224=48小时是同样的道理-人需要休息。我们在休息的时候多少有点愧疚感,这种愧疚感要改。要给休息一个正大光明的名分。

总结

  • ​核心目标:​​ 提升解决问题的​“不可替代性”​,抵御AI时代的技术淘汰潮。
  • ​战略核心:​​ ​​“短期磨功夫,长线铸内功”​——前者提效率保饭碗(工程能力),后者定方向筑壁垒(基础+前沿+发展路线)。
  • ​资料选择:​​ ​由浅入深,先易后难​(视频入门->经典深耕),避免“神书”劝退。
  • ​时间管理:​​ ​动态配比​(功夫:内功 从8:2 -> 5:5 -> 2:8),善用AI规划。
  • ​精力保障:​​ ​精确定位疲劳类型​(身体/认知/情绪),​主动嵌入高效休息并视其为学习合法部分,采用弹性节奏,切忌过猛。
内容概要:本文详细介绍了一个基于MATLAB实现的SWT-SVM故障诊断分类预测项目,通过平稳小波变换(SWT)进行信号去噪与多尺度特征提取,结合支持向量机(SVM)实现机械设备故障的智能分类。项目涵盖从数据采集、预处理、SWT分解、特征提取与降维(如PCA)、模型训练与优化(含交叉验证、网格搜索、贝叶斯优化)、性能评估(混淆矩阵、ROC曲线、F1分数等)到结果可视化与GUI界面开发的完整流程。系统具备高可解释性、强鲁棒性和良好工程集成能力,适用于多行业设备健康监测,并提供完整的代码实现与部署方案。; 适合人群:具备一定MATLAB编程基础,熟悉信号处理与机器学习算法的高校研究生、科研人员及工业领域从事设备故障诊断、智能运维的工程师和技术人员。; 使用场景及目标:①应用于智能制造、风电、轨道交通、石化、航空航天等领域的设备故障早期检测与健康状态评估;②构建端到端的智能诊断pipeline,提升诊断准确率与自动化水平;③通过GUI交互界面实现数据导入、模型训练、实时预测与结果导出,服务于科研教学与工业实际部署。; 阅读建议:建议读者结合文中提供的完整MATLAB代码与GUI设计,逐步复现各模块功能,重点关注SWT参数选择、特征降维策略、SVM超参数优化及模型评估方法。在实践过程中调试信号处理流程与分类性能,深入理解算法原理与工程落地的关键环节。
【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,并提供了Matlab代码实现。该模型结合了MBLS在函数逼近和学习能力方面的优势,以及Copula理论在处理多变量非高斯分布和捕捉变量间复杂相关性结构的能力,能够有效处理光伏出力的不确定性与时空相关性,从而提高预测精度和可靠性。此外,文档还列举了多个相关的科研方向和技术应用实例,如风电预测、虚拟电厂调度、风光制氢合成氨系统优化、多目标优化算法等,展示了其在电力系统、新能源、优化调度等多个领域的广泛应用前景。; 适合人群:具备一定编程基础,尤其是熟悉Matlab编程语言,从事新能源、电力系统、优化调度、机器学习等相关领域研究的科研人员和研究生。; 使用场景及目标:①应用于光伏发电功率的高精度时空概率预测,为电网调度、能源管理和市场交易提供决策支持;②作为研究Copula理论和MBLS算法在复杂非线性系统建模中应用的案例,促进相关算法的改进与创新;③结合文中提到的其他优化算法(如多目标优化、智能优化算法)和应用场景(如虚拟电厂、综合能源系统),构建更复杂的系统优化与决策模型。; 阅读建议:此资源不仅提供了具体的代码实现,还涵盖了丰富的科研背景和应用方向。建议读者在学习过程中,不仅要理解MBLS和Copula理论的核心思想与实现细节,还应结合文中提及的其他技术(如优化算法、深度学习模型)进行横向对比和综合应用,以拓宽研究视野。同时,鼓励读者基于提供的代码框架,针对具体问题进行参数调整和模型改进,通过实践加深对理论的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值