rabbitMQ第四篇:远程调用

前言:前面我们讲解的都是本地服务器,现在如果需要远程计算机上运行一个函数,等待结果。这就是一个不同的故事了,这种模式通常被称为远程过程调用或者RPC。

本章教程我们使用RabbitMQ搭建一个RPC系统,一个客户端和一个可扩展的RPC服务器,现在我们开始吧。

Callback queue

一般做rpc在RabbitMQ是比较容易的,一个客户端发送一个请求信息和一个响应信息的服务器回复,为了得到一个响应,我们需要发送一个回调队列地址请求。如下

Message属性:

AMQP协议一共预定义了14个属性,但是大多数属性很少使用,下面几个可能用的比较多

deliveryMode:有2个值,一个是持久,另一个表示短暂(第二篇说过)

contentType:内容类型:用来描述编码的MIME类型。例如,经常使用JSON编码是将此属性设置为一个很好的做法:application/json。

replyTo:经常使用的是回调队列的名字

correlationid:RPC响应请求的相关应用

Correlation Id

在队列上接收到一个响应,但它并不清楚响应属于哪一个,当我们使用CorrelationId属性的时候,我们就可以将它设置为每个请求的唯一值,稍后当我们在回调队列中接收消息的时候,我们会看到这个属性,如果我们看到一个未知的CorrelationId,我们就可以安全地忽略信息-它不属于我们的请求。为什么我们应该忽略未知的消息在回调队列中,而不是失败的错误?这是由于服务器端的一个竞争条件的可能性。比如还未发送了一个确认信息给请求,但是此时RPC服务器挂了。如果这种情况发生,将再次重启RPC服务器处理请求。这就是为什么在客户端必须处理重复的反应。

需求

 我们的rpc工作方式如下:

1:当客户端启动时,它创建一个匿名的独占回调队列。

2:对于rpc请求,客户端发送2个属性,一个是replyTo设置回调队列,另一是correlationId为每个队列设置唯一值

3:请求被发送到一个rpc_queue队列中

4:rpc服务器是等待队列的请求,当收到一个请求的时候,他就把消息返回的结果返回给客户端,使请求结束。

5:客户端等待回调队列上的数据,当消息出现的时候,他检查correlationId,如果它和从请求返回的值匹配,就进行响应。

编码

RPCServer.Java

复制代码
public class RPCServer {
    private static final String RPC_QUEUE_NAME = "rpc_queue";

    private static int fib(int n) {
        if (n == 0) {
            return 0;
        }
        if (n == 1) {
            return 1;
        }
        return fib(n - 1) + fib(n - 1);
    }

    public static void main(String[] args) throws IOException, InterruptedException, TimeoutException {
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost("localhost");
        Connection connection = factory.newConnection();
        Channel channel = connection.createChannel();
        channel.queueDeclare(RPC_QUEUE_NAME, false, false, false, null);
        channel.basicQos(1);
        QueueingConsumer consumer = new QueueingConsumer(channel);
        channel.basicConsume(RPC_QUEUE_NAME, false, consumer);

        System.out.println("RPCServer Awating RPC request");
        while (true) {
            QueueingConsumer.Delivery delivery = consumer.nextDelivery();
            BasicProperties props = delivery.getProperties();
            BasicProperties replyProps = new AMQP.BasicProperties.Builder().
                    correlationId(props.getCorrelationId()).build();

            String message = new String(delivery.getBody(), "UTF-8");
            int n = Integer.parseInt(message);

            System.out.println("RPCServer fib(" + message + ")");
            String response = "" + fib(n);
            channel.basicPublish( "", props.getReplyTo(), replyProps, response.getBytes());
            channel.basicAck(delivery.getEnvelope().getDeliveryTag(), false);
        }
    }
}
复制代码

服务器代码比较简单

1:建立连接,通道,队列

2:我们可能运行多个服务器进程,为了分散负载服务器压力,我们设置channel.basicQos(1);

3:我们用basicconsume访问队列。然后进入循环,在其中我们等待请求消息并处理消息然后发送响应。

RPCClient.java

复制代码
public class RPCClient {
    private Connection connection;
    private Channel channel;
    private String requestQueueName = "rpc_queue";
    private String replyQueueName;
    private QueueingConsumer consumer;

    public RPCClient() throws IOException, TimeoutException {
        ConnectionFactory factory = new ConnectionFactory();
        factory.setHost("localhost");
        connection = factory.newConnection();
        channel = connection.createChannel();

        replyQueueName = channel.queueDeclare().getQueue();
        consumer = new QueueingConsumer(channel);
        channel.basicConsume(replyQueueName, true, consumer);
    }

    public String call(String message) throws IOException, InterruptedException {
        String response;
        String corrID = UUID.randomUUID().toString();
        AMQP.BasicProperties props = new AMQP.BasicProperties().builder()
                .correlationId(corrID).replyTo(replyQueueName).build();
        channel.basicPublish("", requestQueueName, props, message.getBytes("UTF-8"));
        while (true) {
            QueueingConsumer.Delivery delivery = consumer.nextDelivery();
            if (delivery.getProperties().getCorrelationId().equals(corrID)) {
                response = new String(delivery.getBody(), "UTF-8");
                break;
            }
        }
        return response;
    }

    public void close() throws Exception {
        connection.close();
    }

    public static void main(String[] args) throws Exception {
        RPCClient rpcClient = null;
        String response;
        try {
            rpcClient = new RPCClient();
            System.out.println("RPCClient  Requesting fib(20)");
            response = rpcClient.call("20");
            System.out.println("RPCClient  Got '" + response + "'");
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (rpcClient != null) {
                rpcClient.close();
            }
        }
    }
}
复制代码

客户端代码解读

1:建立一个连接和通道,并声明了一个唯一的“回调”队列的答复

2:我们订阅回调队列,这样就可以得到RPC的响应

3:定义一个call方法用于发送当前的回调请求

4:生成一个唯一的correlationid,然后通过while循环来捕获合适的回应

5:我们请求信息,发送2个属性,replyTo 和correlationId

6:然后就是等待直到有合适的回应到达

7:while循环是做一个非常简单的工作,对于每一个响应消息,它检查是否有correlationid然后进行匹配。然后是就进行响应。

8:最后把响应返回到客户端。

转自:http://www.cnblogs.com/LipeiNet/p/5980802.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值