排序:
默认
按更新时间
按访问量

神经网络的一些超参数重要度排序

超参数重要度: 1,学习率lr 2,动量参数beta(一般为0.9),batchsize大小,隐藏层神经单元个数 3,学习率衰减,隐藏层的层数 4,如果使用的是adam优化,则就是其参数beta1,beta2,epsilon...

2018-07-20 10:27:24

阅读数:104

评论数:0

带有动量的梯度下降的优势

普通的梯度下降算法在寻找最优解的过程中会酱紫:可以看到是存在不断抖动的使用了带动量的梯度下降,由于梯度的计算使用了指数加权平均方法,使得本次梯度的计算和之前是有关联的,这样就能抵消比如梯度在上下摆动的这种状况,而真正的下降方向(朝右边走)却能很好保持,这样使得收敛优化变得更快...

2018-07-13 14:13:23

阅读数:142

评论数:0

神经网络解决过拟合的几种方式

1,data augmentation2,L2 norm3,drop out4,early stopping

2018-07-11 11:47:33

阅读数:327

评论数:0

关于深度学习中训练集,验证集,测试集那些事

1,划分比例:对于小型数据集,train,validate,test划分一般为:60%,20%,20%对于大型数据集,一般验证集和测试集没必要太多,因为只要满足其作用就行,一般不到20%甚至不到10%2,确保验证集和测试集分布相同,这样方便模型评估3,只有验证集而没有测试集容易出现过拟合现象...

2018-07-11 09:58:28

阅读数:387

评论数:0

矩阵求导简单理解

转自知乎:https://www.zhihu.com/question/39523290

2018-07-07 15:18:25

阅读数:161

评论数:0

Tanh激活函数比Sigmoid优点在哪

Sigmoid函数:Tanh函数:优势:Tanh函数是0均值的更加有利于提高训练效率,由于Sigmoid输出是在0-1之间,总是正数,在训练过程中参数的梯度值为同一符号,这样更新的时候容易出现zigzag现象,不容易到达最优值。具体推导详见知乎:https://www.zhihu.com/ques...

2018-07-07 11:50:27

阅读数:403

评论数:0

在目标检测任务中如何计算评价指标-Recall,Precision以及画出PR曲线

目标检测评价指标

2017-12-06 22:22:33

阅读数:2817

评论数:4

Densely Connected Convolutional Networks(DenseNet)

DenseNet详解

2017-09-15 20:45:04

阅读数:552

评论数:3

DeepLearning Trick

深度学习各种trick

2017-08-16 11:13:19

阅读数:147

评论数:0

本地浏览器远程使用linux下的jupyter

jupyter浏览器登录

2017-08-09 17:32:41

阅读数:1273

评论数:2

简单明了理解交叉验证

交叉验证

2017-07-21 11:16:06

阅读数:193

评论数:1

VGG学习总结

Very Deep Convolutional Networks for Large-Scale Image Recognition

2017-07-04 16:14:36

阅读数:5214

评论数:2

归一化的定义与作用

本文主要来源:http://blog.csdn.net/lanmeng_smile/article/details/49903865 归一化的作用

2017-06-15 11:09:08

阅读数:580

评论数:0

使用linux命令获取文件夹下所有文件的绝对路径

获取文件夹下文件名

2017-06-06 17:24:17

阅读数:330

评论数:0

关于vs2015/2013创建opencv项目提示0xc000007b问题

vs配置opencv修复0xc000007b问题

2017-06-03 15:54:33

阅读数:1347

评论数:0

关于调试opencv的那些坑

调试opencv

2017-05-16 11:21:03

阅读数:883

评论数:0

简单明了的C++文件操作之写文件

C++写文件操作,非常简洁

2017-05-15 10:50:11

阅读数:161

评论数:0

Win10下C++代码文件夹遍历错误:0xC0000005: 写入位置时发生访问冲突。

Win10下文件夹遍历代码

2017-05-15 10:09:59

阅读数:1144

评论数:0

使用YOLO框架Darknet进行分类预训练

网络上大部分整理的博文都是关于YOLO以及YOLOv2的finetune过程,但由于实际的业务数据的要求,需要得到与之匹配的预训练模型,本文将使用YOLO的网络进行预训练,得到适合自己的分类器。 文章参考链接地址:https://pjreddie.com/darknet/train-cifar/

2017-04-12 19:58:19

阅读数:10167

评论数:6

Linux下Segmentation fault(core dumped)简单调试方法

linux下的调试工具

2017-04-12 09:54:59

阅读数:16127

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭