POJ 1386 Play on Words(欧拉路径)

题目大意:

首先输入T,表示测试数据的个数。之后是N,表示单词的个数。输入N个单词,如果这些单词能够首尾相连(下一个单词的首字母和上一个单词的最后一个字母相等,第一个单词和最后一个单词不要求能够首尾也相连),那么输出Ordering is possible.,否则输出The door cannot be opened.。

解题思路:

在调试这道题的时候真正体现了一个程序员的悲哀,调完提交,错了,为什么?修改,提交,错了,为什么?修改,提交,又错了,为什么?再改,提交,过了,恩!为什么?

牢骚不多说,现在来分析一下这道题:

这就是一个欧拉路径或者欧拉回路问题,首先需要根据单词构造有向图,这儿只需关注一个单词的第一个字母和最后一个字母就可以了。假设用m[30][30]来表示有向图的邻接矩阵,对于一个word而言,m[word[0]][word[strlen(word)]-1]=1,判断这个有向图能不能构成欧拉路径,首先是这个有向图必须是连通的(判断图连通的时候要把图转化为无向图来判断)。然后才能判断是否存在欧拉回路。


判断欧拉回路的方法:

对于有向图:

1、有向图是连通图;

2、每个点的出度和入度相等。

对于无向图:

1、无向图是连通图;

2、每个点的度是偶数;


判断欧拉路径的方法:

对于有向图:

1、有向图是连通图;

2、有0个或者两个顶点的出度和入读不相等(出度和入度的差值为1,且一个顶点的出度大于入度,另一个顶点的入度大于出度),其他顶点的出度和入度相等。

对于无向图:

1、无向图是连通图;

2、有0个或者两个顶点的度数为奇数,其他顶点的度数为偶数。


我在做这道题的时候WA了很多次,很大的原因是在判断连通图上,网上很多题解使用并查集来判断的,因为我没学过并查集,所以就用深搜来判断了:

正确的判断连通图的函数:

int check(int m[30][30]){  //判断图是否是连通图,返回0表示不是连通图
    int i = 0;
    for(i=0; i<26; i++){
        if(out[i]) break;
    }
    memset(vis,0,sizeof(vis));
    int res = 0;
    for(int i=0; i<26; i++){
        if(!vis[i] && out[i]){
            res++;
            dfs(i);
        }
    }
    if(res > 1) return 0;
    return 1;
}

贴出之前出现错误函数代码:

int check(int m[30][30]){
    int i = 0;
    for(i=0; i<26; i++){
        if(out[i]) break;
    }
    memset(vis,0,sizeof(vis));
    dfs(i);
    for(i=0; i<26; i++){
        if(vis[i]==0 && out[i]){
            return 0;
        }
    }
    return 1;
}

完整的代码:

#include<cstdio>
#include<cstring>

int out[30],in[30];  //出度,入度
int sum[30];         //顶点的出度和入度之和
int vis[30];
int m[30][30];       //邻接矩阵
void dfs(int v){
    vis[v] = 1;
    for(int i=0; i<26; i++){
        if(m[v][i] && !vis[i]) dfs(i);
    }
    return ;
}
int check(int m[30][30]){  //判断图是否是连通图,返回0表示不是连通图
    int i = 0;
    for(i=0; i<26; i++){
        if(out[i]) break;
    }
    memset(vis,0,sizeof(vis));
    int res = 0;
    for(int i=0; i<26; i++){
        if(!vis[i] && out[i]){
            res++;
            dfs(i);
        }
    }
    if(res > 1) return 0;
    return 1;
}
int main(){
    int t, n;
    char str[1005];
    scanf("%d", &t);
    while(t--){
        scanf("%d", &n);
        memset(out,0,sizeof(out));
        memset(in,0,sizeof(in));
        memset(m,0,sizeof(m));
        for(int i=0; i<n; i++){
            scanf("%s", str);
            int len = strlen(str);
            out[str[0] - 'a']++;
            in[str[len-1] - 'a']--;
            m[str[0] - 'a'][str[len - 1] - 'a'] = 1;
            m[str[len - 1] - 'a'][str[0] - 'a'] = 1;
        }
        if(n==1){
            printf("Ordering is possible.\n");
            continue;
        }
        for(int i=0; i<26; i++){
            sum[i] = out[i] + in[i];
        }
        if(!check(m)){
            printf("The door cannot be opened.\n");
            continue;
        }
        int ans=0;
        int flag=0;
        int flag1=0, flag2=0;
        for(int i=0; i<26; i++){
            if(sum[i] < -1 || sum[i] >1){
                flag = 1;
                break;
            }
            if(sum[i] == 1){
                flag1++;
            }
            if(sum[i] == -1){
                flag2++;
            }
        }
        //printf("%d\n",flag);
        if(flag){
            printf("The door cannot be opened.\n");
        }
        else if((flag1==0 || flag1==1) && flag1 == flag2){
            printf("Ordering is possible.\n");
        }
        else{
            printf("The door cannot be opened.\n");
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值