题目不难,和poj2528相似,都是求区间最终可以看见的颜色个数。
题目大意为:给定n段,分别编号为1、2、……、n。初始化时都涂色为1,现在规定两中操作:
1)C A B C,给编号为A和B段涂色C
2)P A B,输出编号A到B段的涂色数
现在给定T为颜色的种类数(1——T)和O为操作总数,要求按照相应的操作输出P A B。
分析如下: 令线段树节点定义为: l,r,value,flag分被表示区间左右端点,该区间的涂色为value,flag为标记量,true表示该区间涂色为最新的涂色,否则表示该区间的子区间有更新的涂色。由于初始时均涂色为1,故value的值均为1,flag均为true(即都是最新的涂色)。本题的难点在于更新和查找。
线段树的更新:寻找输入的涂色区域,在寻找的过程中若发现节点的flag为true,则要先更新子节点的value和flag然后更新自身的value和flag(注意顺序不能反了),当查找到区间时,直接赋值value和更新flag为true。
线段树的查找:线段树的更新和查找是联系起来的,这里主要说明一下查找的技巧:
朴素的查找就是边查找边更新,直到找到与查找路径相同的区间为止,其实这样得不偿失,消费了许多时间在无用的更新操作上,也使查找深度加深,所以可以只要flag为true,而不管该线段树区间时等于查找区间还是大于查找区间,由于是最新的涂色而且必定包含查找区间,故可以直接判断该涂色,并返回。这是查找关键,没有这一步就等着TLE。
下面是代码:4268K+329MS
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define Max 40
#define Maxx 100010
#define Lson(p) (p<<1)
#define Rson(p) (p<<1|1)
#define Mid(a,b) ((a+b)>>1)
#define Minn(a,b) ((a)<(b))?(a):(b)
#define MAXX(a,b) ((a)>(b))?(a):(b)
struct Node{
int l,r,value;
bool flag;
}node[Maxx*3];
bool trag[Max]; //每次查找时标记颜色是否已经存在
int L,T,O;
int ans; //最终结果
void build_tree(int left,int right,int po){ //建树,初始化value为1,flag为true,即都是最新的涂色1
node[po].l=left,node[po].r=right,node[po].value=1,node[po].flag=true;
if(left==right)
return ;
int mid=Mid(left,right);
build_tree(left,mid,Lson(po));
build_tree(mid+1,right,Rson(po));
}
void update_tree(int left,int right,int v,int po){ //更新线段树
if(left==node[po].l && right==node[po].r){ //若找到区间则赋值value为最新颜色,并置flag为true
//printf("color:%d %d\n",left,right);
node[po].value=v;
node[po].flag=true;
return ;
}
if(node[po].flag){ // 否则,更新路径上的‘次’最新涂色节点,先儿子后父节点
node[Lson(po)].value=node[po].value;
node[Rson(po)].value=node[po].value;
node[po].flag=false; //置标记为false,表示不是最新涂色了
node[Lson(po)].flag=true; //表示是最新涂色
node[Rson(po)].flag=true;
}
int mid=Mid(node[po].l,node[po].r);
if(right<=mid) //向下搜索
update_tree(left,right,v,Lson(po));
else if(left>=mid+1)
update_tree(left,right,v,Rson(po));
else{
update_tree(left,mid,v,Lson(po));
update_tree(mid+1,right,v,Rson(po));
}
}
void search_tree(int left,int right,int po){ //查找线段树,其中没有注释的是优化后的查询,加了注释的是朴素查询(TLE)
if(/*left==node[po].l && right==node[po].r &&*/ node[po].flag){ //只要区间包含即可判断查找区间颜色
//printf("search:%d %d %d\n",left,right,node[po].value);
if(!trag[node[po].value]){
trag[node[po].value]=true;
ans++;
}
return ;
}
/*if(node[po].flag){ //多余更新操作
node[Lson(po)].value=node[po].value;
node[Rson(po)].value=node[po].value;
node[po].flag=false;
node[Lson(po)].flag=true;
node[Rson(po)].flag=true;
}*/
int mid=Mid(node[po].l,node[po].r);
if(right<=mid) //向下搜索
search_tree(left,right,Lson(po));
else if(left>=mid+1)
search_tree(left,right,Rson(po));
else{
search_tree(left,mid,Lson(po));
search_tree(mid+1,right,Rson(po));
}
}
int main(){
while(scanf("%d%d%d",&L,&T,&O)!=EOF){
build_tree(1,L,1); //建树
getchar();
int a,b,v;
for(int i=0;i<O;i++){
char temp=getchar();
if(temp=='C'){ //更新线段树
scanf("%d%d%d",&a,&b,&v);
update_tree(Minn(a,b),MAXX(a,b),v,1);
}
else{ //查找
scanf("%d%d",&a,&b);
memset(trag,0,sizeof(trag)); //每次都初始化为未出现
ans=0; //计数结果初始化为0
search_tree(Minn(a,b),MAXX(a,b),1);
printf("%d\n",ans);
}
getchar();
}
}
return 0;
}