梯度下降算法以及线性回归模型

版权声明:本文为原创文章:http://blog.csdn.net/programmer_wei/article/details/51941358

梯度下降算法是一个很基本的算法,在机器学习和优化中有着非常重要的作用,本文首先介绍了梯度下降的基本概念,然后使用python实现了一个基本的梯度下降算法。梯度下降有很多的变种,本文只介绍最基础的梯度下降,也就是批梯度下降。


实际应用例子就不详细说了,网上关于梯度下降的应用例子很多,最多的就是NG课上的预测房价例子: 
假设有一个房屋销售的数据如下:

面积(m^2) 销售价钱(万元)

面积(m^2)销售价钱(万元)
123250
150320
87180

根据上面的房价我们可以做这样一个图:

这里写图片描述

于是我们的目标就是去拟合这个图,使得新的样本数据进来以后我们可以方便进行预测: 
这里写图片描述

对于最基本的线性回归问题,公式如下: 
这里写图片描述 
x是自变量,比如说房子面积。θ是权重参数,也就是我们需要去梯度下降求解的具体值。

在这儿,我们需要引入损失函数(Loss function 或者叫 cost function),目的是为了在梯度下降时用来衡量我们更新后的参数是否是向着正确的方向前进,如图损失函数(m表示训练集样本数量): 
这里写图片描述 
下图直观显示了我们梯度下降的方向,就是希望从最高处一直下降到最低出: 
这里写图片描述

梯度下降更新权重参数的过程中我们需要对损失函数求偏导数: 
这里写图片描述 
求完偏导数以后就可以进行参数更新了: 
这里写图片描述 
伪代码如图所示: 
这里写图片描述


下面是代码:

import numpy as np
import matplotlib.pyplot as plt
#y=2 * (x1) + (x2) + 3 
rate = 0.001
x_train = np.array([    [1, 2],    [2, 1],    [2, 3],    [3, 5],    [1, 3],    [4, 2],    [7, 3],    [4, 5],    [11, 3],    [8, 7]    ])
y_train = np.array([7, 8, 10, 14, 8, 13, 20, 16, 28, 26])
x_test  = np.array([    [1, 4],    [2, 2],    [2, 5],    [5, 3],    [1, 5],    [4, 1]    ])

a = np.random.normal()
b = np.random.normal()
c = np.random.normal()

def h(x):
    return a*x[0]+b*x[1]+c

for i in range(10000):
    sum_a=0
    sum_b=0
    sum_c=0
    for x, y in zip(x_train, y_train):
        sum_a = sum_a + rate*(y-h(x))*x[0]
        sum_b = sum_b + rate*(y-h(x))*x[1]
        sum_c = sum_c + rate*(y-h(x))
    a = a + sum_a
    b = b + sum_b
    c = c + sum_c
    plt.plot([h(xi) for xi in x_test])

print(a)
print(b)
print(c)

result=[h(xi) for xi in x_train]
print(result)

result=[h(xi) for xi in x_test]
print(result)

plt.show()

x_train是训练集x,y_train是训练集y, x_test是测试集x,运行后得到如下的图,图片显示了算法对于测试集y的预测在每一轮迭代中是如何变化的: 
这里写图片描述

我们可以看到,线段是在逐渐逼近的,训练数据越多,迭代次数越多就越逼近真实值。

参考文章: 
http://www.cnblogs.com/LeftNotEasy/archive/2010/12/05/mathmatic_in_machine_learning_1_regression_and_gradient_descent.html

http://www.cnblogs.com/eczhou/p/3951861.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是使用Python代码对梯度下降算法实现线性回归的示例: 首先,我们需要导入所需的包: ```python import numpy as np import matplotlib.pyplot as plt ``` 然后,我们定义一个函数来计算误差,即损失函数: ```python def compute_cost(X, y, theta): m = len(y) predictions = X.dot(theta) square_err = (predictions - y) ** 2 J = 1 / (2 * m) * np.sum(square_err) return J ``` 其中,X是一个m行n列的特征矩阵,y是一个m行1列的目标向量,theta是一个n行1列的参数向量,m是样本数量,n是特征数量。 接下来,我们定义一个函数来执行梯度下降算法: ```python def gradient_descent(X, y, theta, alpha, num_iters): m = len(y) J_history = np.zeros((num_iters, 1)) for i in range(num_iters): predictions = X.dot(theta) errors = np.subtract(predictions, y) delta = (alpha / m) * X.transpose().dot(errors) theta = theta - delta J_history[i] = compute_cost(X, y, theta) return theta, J_history ``` 其中,alpha是学习率,num_iters是迭代次数,J_history记录了每次迭代后的损失函数值。 最后,我们可以使用上述函数来拟合一个简单的线性模型: ```python # 生成随机数据 np.random.seed(0) X = 2 * np.random.rand(100, 1) y = 4 + 3 * X + np.random.randn(100, 1) # 对特征矩阵X添加一列全为1的向量,以便于计算截距 X_b = np.c_[np.ones((100, 1)), X] # 初始化参数向量theta theta = np.random.randn(2, 1) # 执行梯度下降算法 alpha = 0.1 num_iters = 1000 theta, J_history = gradient_descent(X_b, y, theta, alpha, num_iters) # 绘制拟合直线 plt.scatter(X, y) plt.plot(X, X_b.dot(theta), 'r') plt.show() ``` 这里我们生成了一个简单的一维数据集,然后对其进行线性回归拟合并绘制出拟合直线。 完整代码如下:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值