问题描述:
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than
O(n2). - There is only one duplicate number in the array, but it could be repeated more than once.
问题分析:
本题看似附加要求很多,实质上跟142. Linked List Cycle II 的解法类似,利用双指针,找到fast和slow相遇的值,再去找到circle的入口即可。
过程详见代码:
class Solution {
public:
int findDuplicate(vector<int>& nums) {
int slow = nums[0],fast = nums[nums[0]];
while (slow != fast)
{
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = 0;
while (slow != fast)
{
slow = nums[slow];
fast = nums[fast];
}
return slow;
}
};
283

被折叠的 条评论
为什么被折叠?



