目录
上一篇:机器学习实战-特征选择
上一篇文章里面,我们主要介绍了特征选择的三种方法,这篇文章小编就来介绍过滤法。
考虑到很多同学刚开始学,这里不会介绍算法公式,相比与高校或者实验室里面,很多同学应该都懂,但是没接触过的同学,又看不懂,所以小编直接不讲,这里只讲怎么用,以便同学可以更快上手,如果有兴趣研究算法内容的同学,自行百度即可,都是公式的。
备注:算法中的数据,我会采用真实现网的中的部分数据来实现

本文章节
1、数据加载及展示
2、低方差特征过滤
3、单变量特征过滤
数据加载及展示
为什么会直接把这个东西放在这里,有以下两个原因
1、数据是取自生产上的数据,更接近真实性,目前网上的数据千篇一律,你看不出个所以然来。
2、数据我做了一次简单的清洗,对于后面的分类有比较好的

本文介绍机器学习中的特征选择过滤法,包括低方差特征过滤和单变量特征过滤。通过实例展示了如何使用Python对真实数据进行处理,讨论了过滤法的适用条件和注意事项,最终通过不同算法进行特征提取并保留关键特征。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



