路径规划算法:基于人工蜂群算法的路径规划算法- 附代码

该文探讨了使用人工蜂群算法进行路径规划,特别是在移动机器人的场景下寻找最短路径。算法考虑了环境约束如矩形边界和障碍物,适应度函数以路径长度为优化目标。文章提供了MATLAB代码实现,并支持自定义地图和起点终点。
摘要由CSDN通过智能技术生成

路径规划算法:基于人工蜂群的路径规划算法- 附代码


摘要:本文主要介绍利用智能优化算法人工蜂群算法来进行路径规划。

1.算法原理

人工蜂群算法具体原理请参照:https://blog.csdn.net/u011835903/article/details/108292748

1.1 环境设定

在移动机器人的路径优化中,每个优化算法的解代表机器人的一条运动路径。优化算法会通过优化计算在众多路径中找出一条最优路径。
优化算法的设定必须和机器人运动环境模型相对应。不失一般性,假设在用栅格法对机器人运动环境建模后得出的结果是 m×n 的矩形区域,坐标值从 1 开始,如图1 。其中坐标原点栅格代表机器人的初始位置,坐标 (m,n)对应的栅格代表机器人的移动目标位置。优化算法设定的一个重要内容是确定优化算法的数学表达形式,在这里这个问题转化为用一个向量表示机器人的移动路径。经过分析发现,尽管栅格法建立的模型对空间进行了离散化,但本质上机器人的移动路径依然是连续的。

在这里插入图片描述

图1.栅格地图

1.2 约束条件

对于机器人的路径优化来说,其运动路径必须局限在栅格空间内,即搜索不能越过栅格的矩形边界。此外,还应受障碍物的限制,即机器人的运动轨迹不能穿过存在障碍物的栅格区域。

1.3 适应度函数

在本文的建模方法中,本文路径规划目标是路径长度最短。路径的长度可以表示为:

L ( P a t h ) = ∑ i = 0 n − 1 ( x l i + 1 − x l i ) 2 + ( y l i + 1 − y l i ) 2 (1) L(Path) = \sum_{i=0}^{n-1}\sqrt{(xl_{i+1} - xl_i)^2 + (yl_{i+1} - yl_{i})^2}\tag{1} L(Path)=i=0n1(xli+1xli)2+(yli+1yli)2 (1)
其中(x,y)是路径中间点的坐标

利用人工蜂群算法对上式进行寻优,找到最短路径。人工蜂群算法参数设定如下:

%% 人工蜂群算法参数设置
dim=length(noLM);%维度,即为非障碍物个数。
numLM0=round((EndPoint(1)-StartPoint(1))/4);%每次迭代选取的的中间路径点个数,可调
lb=0;%下边界
ub=1;%上边界
Max_iteration = 100;%最大迭代次数
SearchAgents_no = 30;%种群数量
fobj = @(x)fun(x,noS,noE,numLM0,net);%适应度函数

2.算法结果

在这里插入图片描述

3.MATLAB代码

本程序中,支持1.地图任意创建保存。2.其实点任意更改。

4.参考文献

[1]罗阳阳,彭晓燕.基于改进PSO的四轮移动机器人全局路径规划[J].计算机仿真,2020,37(07):373-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

-379.

[2]鲁丹. 粒子群算法在移动机器人路径规划中的应用研究[D].武汉科技大学,2009.

以下是使用Python实现的人工蜂群算法路径规划代码: ```python import math import random # 定义起点和终点 start_point = (0, 0) end_point = (10, 10) # 定义蜜蜂数量和迭代次数 num_bees = 50 num_iter = 100 # 定义信息素浓度 pheromone = 1.0 # 定义位置更新参数 alpha = 1.0 beta = 2.0 # 定义信息素更新参数 q = 1.0 rho = 0.5 # 定义蜜蜂类 class Bee: def __init__(self): self.position = start_point self.distance = self.get_distance() def get_distance(self): # 计算蜜蜂到达终点的距离 x_diff = self.position[0] - end_point[0] y_diff = self.position[1] - end_point[1] return math.sqrt(x_diff**2 + y_diff**2) def update_position(self, other_bees): # 更新蜜蜂位置 max_distance = max(other_bees, key=lambda bee: bee.distance).distance if max_distance == 0: max_distance = 1 prob = [(pheromone / (bee.distance / max_distance)**beta) for bee in other_bees] prob = [p / sum(prob) for p in prob] selected_bee = random.choices(other_bees, weights=prob)[0] self.position = ( self.position[0] + alpha * (selected_bee.position[0] - self.position[0]), self.position[1] + alpha * (selected_bee.position[1] - self.position[1]) ) def update_pheromone(self): # 更新信息素浓度 pheromone_change = q / self.distance pheromone_change = pheromone_change if self.distance != 0 else 1 pheromone_change = pheromone_change**rho global pheromone pheromone = (1 - rho) * pheromone + rho * pheromone_change # 初始化蜜蜂群 bees = [Bee() for _ in range(num_bees)] # 迭代寻找最优路径 for i in range(num_iter): # 更新蜜蜂位置 for bee in bees: other_bees = [b for b in bees if b != bee] bee.update_position(other_bees) bee.distance = bee.get_distance() # 更新信息素浓度 for bee in bees: bee.update_pheromone() # 输出当前最优路径 best_bee = min(bees, key=lambda bee: bee.distance) print('Iteration {}: Best distance = {}'.format(i+1, best_bee.distance)) # 输出最终最优路径 best_bee = min(bees, key=lambda bee: bee.distance) print('Best path:', start_point, end_point) for bee in bees: if bee != best_bee: continue print(bee.position) ``` 以上代码实现了人工蜂群算法的基本流程,包括初始化蜜蜂群、迭代寻找最优路径以及更新蜜蜂位置和信息素浓度等操作。在迭代过程中,每次输出当前最优路径的距离,最终输出最优路径的起点、终点以及经过的所有点。需要注意的是,这里的路径是由一只蜜蜂经过的所有点构成的,而不是由所有蜜蜂共同构成的路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值