
深度极限学习机(DELM)
文章平均质量分 96
介绍智能优化算法改进DELM
智能算法研学社(Jack旭)
书籍《智能优化算法及其MATLAB实现》,《Python智能优化算法:从原理到代码实现与应用》,《智能优化算法与MATLAB编程实践》作者,代码获取可通过公众号,或者私信。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
指数分布算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用指数分布算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:20:04 · 780 阅读 · 0 评论 -
斑马算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用袋獾算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:19:25 · 1047 阅读 · 0 评论 -
袋獾算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用袋獾算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:18:51 · 792 阅读 · 0 评论 -
减法平均算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用鱼鹰算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:18:11 · 908 阅读 · 0 评论 -
鱼鹰算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用鱼鹰算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:17:36 · 668 阅读 · 0 评论 -
驾驶训练算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用驾驶训练算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:16:55 · 602 阅读 · 0 评论 -
浣熊算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用浣熊算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:16:14 · 809 阅读 · 0 评论 -
厨师算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用厨师算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:15:34 · 586 阅读 · 0 评论 -
卷积优化算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用卷积优化算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:14:54 · 869 阅读 · 0 评论 -
人工兔算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用人工兔算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:14:09 · 1004 阅读 · 0 评论 -
协作搜索算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用人工蜂鸟算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:13:27 · 963 阅读 · 0 评论 -
人工蜂鸟算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用人工蜂鸟算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-12 21:12:47 · 772 阅读 · 0 评论 -
孔雀算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用白鲸算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:40:54 · 724 阅读 · 0 评论 -
法医调查算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用法医调查算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:41:33 · 639 阅读 · 0 评论 -
白鲸算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用白鲸算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:40:18 · 763 阅读 · 0 评论 -
侏儒猫鼬算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用侏儒猫鼬算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:39:37 · 682 阅读 · 0 评论 -
沙猫群算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用沙猫群算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:38:53 · 576 阅读 · 0 评论 -
战争策略算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用战争策略算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:38:08 · 1013 阅读 · 0 评论 -
广义正态分布算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用广义正态分布算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:37:13 · 834 阅读 · 0 评论 -
食肉植物算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用食肉植物算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:36:33 · 1041 阅读 · 0 评论 -
金豺算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用金豺算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:35:52 · 716 阅读 · 0 评论 -
鹈鹕算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用鹈鹕算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:35:09 · 939 阅读 · 0 评论 -
北方苍鹰算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用北方苍鹰算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:34:28 · 914 阅读 · 0 评论 -
蛇优化算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用蛇优化算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:33:48 · 730 阅读 · 0 评论 -
材料生成算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用材料生成算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:33:03 · 636 阅读 · 0 评论 -
跳蛛算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用跳蛛算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-11 22:31:56 · 605 阅读 · 0 评论 -
向量加权平均算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用向量加权平均算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:21:24 · 997 阅读 · 0 评论 -
金枪鱼群算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用金枪鱼群算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:20:45 · 1230 阅读 · 0 评论 -
爬行动物算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用爬行动物算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:20:01 · 714 阅读 · 0 评论 -
原子轨道搜索算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用原子轨道搜索算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:19:15 · 945 阅读 · 0 评论 -
天鹰算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用天鹰算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:18:24 · 822 阅读 · 0 评论 -
猎食者算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用猎食者算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:17:37 · 894 阅读 · 0 评论 -
鹰栖息算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用鹰栖息算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:16:54 · 604 阅读 · 0 评论 -
卷尾猴算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用卷尾猴算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:16:04 · 1023 阅读 · 0 评论 -
人工大猩猩部队算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用人工大猩猩部队算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:15:21 · 375 阅读 · 0 评论 -
晶体结构算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用晶体结构算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:14:37 · 1027 阅读 · 0 评论 -
变色龙算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用变色龙算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:13:49 · 815 阅读 · 0 评论 -
野马算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用野马算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:13:07 · 1481 阅读 · 0 评论 -
白冠鸡算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用骑手优化算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:12:25 · 1298 阅读 · 0 评论 -
骑手优化算法改进的深度极限学习机DELM的分类
与传统深度学习算法相同,DELM 也是用逐层贪婪的训练方法来训练网络,DELM每个隐藏层的输入权重都使用ELM-AE初始化,执行分层无监督训练,但是与传统深度学习算法不同的是DELM不需要反向微调过程。若 m=L,ELM-AE实现等维度的特征表达;由上述原理可知原始DELM中的,权重采用随机初始化的方式进行初始化,而初始权重对于整个模型的预测结果影响比较大,于是采用骑手优化算法对DELM的初始权重进行优化。综上,ELM-AE是一个通用的逼近器,特点就是使网络的输出与输入相同,而且隐藏层的输入参数。原创 2024-06-10 16:11:48 · 895 阅读 · 0 评论