前言:米尔科技的FZ3是与百度紧密合作推出的一款基于Xilinx Zynq Ultrascale CZU3EG芯片打造的深度学习计算卡,芯片内部集成了4核ARM A53处理器+GPU+FPGA的架构,具有多核心处理能力、FPGA可编程能能力以及视频流硬件解码能力等特点。
同时内置了基于Linux操作系统+百度深度学习平台-飞桨(Paddle)定制的深度学习软核,深度兼容百度大脑模型资源与工具平台(EasyDL/AIStudio),可高效、快速的实现模型的训练-部署-推理等一系列流程,极大降低了开发验证、产品集成、科研教学、项目部署的门槛。

软核简介
FZ3 计算卡内部搭载Linux系统,开发者可以基于Linux系统进行应用程序进行开发。
主要调用流程:
->1.应用程序获取视频输入
->2.调用预测库加载模型
->3.调度模型和底层驱动加速模块进行计算
->4.获得运行结果
如何用Paddle模型开发应用?
1.模型获得
目前Paddle-Mobile仅支持Paddle训练的模型。如果你手中的模型是不同种类的模型,需要进行模型转换才可以运行。验证过的网络包含resnet、Inception、ssd、mobilenet等。
训练模型:
如果您没有模型,可以使用sample中的模型,或自己训练模型。
1.通过PaddlePaddle开源深度学习框架自己训练模型;
2.通过AI Studio平台训练模型;
3.可以在EasyDL等平台上传标注数据,训练模型;
转换模型:
1.如果您已

米尔科技的FZ3深度学习计算卡基于Xilinx Zynq Ultrascale CZU3EG芯片,内含Linux系统和百度飞桨定制软核。本文介绍了如何利用Paddle模型进行应用开发,包括模型获取与转换、连接视频数据源、加载驱动、使用预测库及创建应用的详细步骤。
最低0.47元/天 解锁文章

782

被折叠的 条评论
为什么被折叠?



