《Python Cookbook 3rd》笔记(1.4):查找最大或最小的N个元素

《Python Cookbook 3rd》1.4:查找最大或最小的N个元素

问题

怎样从一个集合中获得最大或者最小的N个元素列表?

解法

heapq 模块有两个函数:nlargest()和nsmallest()可以完美解决这个问题。

import heapq
nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
print(heapq.nlargest(3, nums)) # Prints [42, 37, 23]
print(heapq.nsmallest(3, nums)) # Prints [-4, 1, 2]

两个函数都能接受一个关键字参数,用于更复杂的数据结构中:

portfolio = [
	{'name': 'IBM', 'shares': 100, 'price': 91.1},
	{'name': 'AAPL', 'shares': 50, 'price': 543.22},
	{'name': 'FB', 'shares': 200, 'price': 21.09},
	{'name': 'HPQ', 'shares': 35, 'price': 31.75},
	{'name': 'YHOO', 'shares': 45, 'price': 16.35},
	{'name': 'ACME', 'shares': 75, 'price': 115.65}
]
cheap = heapq.nsmallest(3, portfolio, key=lambda s: s['price'])
expensive = heapq.nlargest(3, portfolio, key=lambda s: s['price'])

讨论

如果你想在一个集合中查找最小或最大的 N 个元素,并且 N 小于集合元素数量,那么这些函数提供了很好的性能。因为在底层实现里面,首先会先将集合数据进行堆排序后放入一个列表中:

>>> nums = [1, 8, 2, 23, 7, -4, 18, 23, 42, 37, 2]
>>> import heapq
>>> heap = list(nums)
>>> heapq.heapify(heap)
>>> heap
[-4, 2, 1, 23, 7, 2, 18, 23, 42, 37, 8]

堆数据结构最重要的特征是heap[0]永远是最小的元素。并且剩余的元素可以很容易的通过调用heapq.heappop()方法得到,该方法会先将第一个元素弹出来,然后用下一个最小的元素来取代被弹出元素 (这种操作时间复杂度仅仅是O(log N),N是堆大小)。比如,如果想要查找最小的3个元素,你可以这样做:

>>> heapq.heappop(heap)
-4
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
2

当要查找的元素个数相对比较小的时候,函数nlargest()和nsmallest()是很合适的。如果你仅仅想查找唯一的最小或最大(N=1)的元素的话,那么使用 min()和max()函数会更快些。

类似的,如果N的大小和集合大小接近的时候,通常先排序这个集合然后再使用切片操作会更快点(sorted(items)[:N] 或者是 sorted(items)[-N:])。需要在正确场合使用函数 nlargest()和nsmallest()才能发挥它们的优势 (如果N快接近集合大小了,那么使用排序操作会更好些)。

尽管你没有必要一定使用这里的方法,但是堆数据结构的实现是一个很有趣并且值得你深入学习的东西。基本上只要是数据结构和算法书籍里面都会有提及到。heapq模块的官方文档里面也详细的介绍了堆数据结构底层的实现细节。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页