1*1卷积核的作用

起因

想明白1*1卷积核的作用,bottleneck(1∗1卷积核)是在2014年的GoogLeNet中首先应用的。

1*1卷积核的作用

B站学习链接
卷积神经网络中用11 卷积有什么作用或者好处呢?
其他博主写的内容大都是从吴恩达的视频课中的笔记得来。所以可以直接看吴恩达的CNN课,吴恩达在CNN时,B站分了43节小课,算是很详细了很全面了。这是吴恩达11卷积的链接。之前看李宏毅的课,两个老师的课侧重点不同,都是超级棒。

看了原版吴恩达的课直接就理解了,之前看了好几版其他人解说的都没有看明白,写博客的博主大部分是将博客作为自己的笔记来记录,懂了的部分就不会花时间详细整理说明了。写博客还是要写清楚内容来源的,转载或者学习的谁的课程,写清楚,全都标记为原创实在是让人纳闷。

用1*1 卷积的目的

之前加入池化层,目的是对特征的宽和高降维,比如图片(28,28,3),用(2,2)池化,降维到(14,14,3),但如果是(28,28,128),通道数128,使得CNN的(m, n)维的filter,每个filter的参数数量为m*n*128,参数太多,通道数降维也很重要了,1*1卷积层的目的就是降低通道维数。
1*1卷积是在channel的方向上做一次全连接层的神经网络,再经过relu激活层,输出一个值,这样,长*宽*channel ==> 长*宽*1,这是1个1*1卷积核的时候,如果是n_filter个,就是长*宽*channel ==> 长*宽*n_filter.
在这里插入图片描述

如果让1*1卷积核的filter个数仍然保持128,那么相当于没有降维,但是network in network仍然存在,作用只是添加了非线性函数,使得网络可以学习更加复杂的函数。
同样的道理,也可以用1*1卷积核增加信道数量。
存在的疑问:高维信道在理论上可以理解,那实际物理意义上,在什么场景下会有高维信道数?常有吗?为什么会有这样的疑问,是因为将channel理解地狭义了,对应网络的input层,确实是信号(图像)的信道数,但是对于第二层网络就是前一层CNN的filter个数了,前一层filter的个数是不定的,64、128、256都是常见的。

参考来源链接

https://blog.csdn.net/ft_sunshine/article/details/90953784

### 1x1 卷积核的功能与作用 在神经网络中,1x1卷积核是一种特殊的卷积操作形式,其主要功能在于调整通道数以及实现特征的线性组合。对于给定的一个输入张量 \( x \),如果它的形状为 [1, 3, 640, 640],通过应用一个具有 16 个滤波器的 1x1 卷积层之后,输出张量的形状会变为 [1, 16, 640, 640][^3]。 #### 调整通道数量 1x1 卷积的核心用途之一就是改变输入数据中的通道维度(即深度)。这可以通过设置不同的过滤器数目来完成。例如,在上述例子中,原始图像有三个颜色通道(RGB),而经过一层带有十六个不同权重矩阵的 1x1 卷积处理后,生成了一个新的特征图集合,其中包含了十六种独立计算得到的新特性表示。 ```python import torch.nn as nn conv_1x1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=1) output_tensor = conv_1x1(input_tensor) # Assuming input_tensor has shape [1, 3, 640, 640] print(output_tensor.shape) # Output will be [1, 16, 640, 640] ``` 这种变换不仅能够增加模型表达能力,还可以减少参数总量从而降低过拟合风险;另外当需要压缩高维空间时也非常有用——比如在网络设计过程中常用到降维技术以提高效率并保持性能不变甚至有所提升的情况之下。 #### 特征融合 除了单纯地修改尺寸外,另一个重要方面涉及到了如何利用这些小型化后的感受野来进行局部区域内信息的有效聚合。具体来说,每一个位置上的响应实际上是基于该处所有前序层所提供出来的多尺度上下文线索加权求和而成的结果。因此即使没有显式的跨像素交互过程存在于此阶段之中,仍然可以捕捉到来自更广泛范围内的依赖关系模式[^2]。 综上所述,尽管表面上看起来简单直白,但实际上1×1大小的卷积单元却蕴含着极其丰富的内涵价值所在之处,并且已经成为现代CNN架构不可或缺的一部分组成部分了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值