杂项

一.知识点:

1.css中可以继承的属性大部分都是和文本相关的,如:颜色、字体、字号;

2.css不能继承的属性,主要涉及元素盒子的定位和显示方式,如:边框、外边距、内边距。

3.css在浏览器中发挥作用的过程:

首先找到每个元素和属性的所有声明,然后按照顺序和权重排序,按特定制度排序,接着浏览器为每个html元素生成矩形盒子,最后矩形盒子按照可见版式模型在页面上排布(可见的页面版式主要由三个属性控制:position、display、float);

其中:

position属性控制页面上的元素之间的位置关系;

display属性控制元素是堆叠、并排还是根本不在页面上出现;

float属性提供控制的方式,以便把元素组成多栏布局;

4.每个盒子都有上下两个图层,上面的图层是内容和边框,下层是背景图片和背景颜色。

二.关于手机页面开发一些咋项整理:

(需要后期整理)

1.关于按钮居中:

如果按钮是绝对定位,设置居中的方法:

position:absolute;left:50%;-webkit-transform:translateX(-50%);-moz-transform:translateX(-50%);transform:translateX(-50%);

2.关于媒体查询:

使用媒体查询的时候,先在chrome浏览器下写一个与设计图比例合适的标准版本(其中的各个元素的位置大小都用百分比或者使用rem em单位设定),然后在html里除了border等需要使用px的单位,其他的时候最好使用em或者rem单位,然后完成标准版本之后,在chrome浏览器中调整设备的宽高,再一些高度或者宽度受限的添加下,再使用媒体查询设置最小高度或者最小宽度。这个最小高度或者最小宽度的单位也是相对单位,不能用绝对单位,这样才能保证只有高度受限或者只有宽度受限(因为相对单位宽高都是有比例的)。还有一些其他的单位需要了解:vm vh vmin vmax px pc in em rem...

3.vertical-align:-2px;用来修复单选框和复选框与12px文字大小不对齐的问题。
4.多个空格只显示为一个,如果想多个空格显示为多个用全角。

5.click事件在移动端会有300ms的延迟,所以最好用touch事件。

6.2.在手机端点击a标签会黑一下,解决办法?

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值