AI从零开始之有监督学习和无监督学习

统计学学习可以分为两类,一类是有监督学习(supervised learning),另一类则是无监督学习(unsupervised learning)。那么这两个概念究竟该如何理解,本文就尝试从自己学习的角度来和大家分享一下,这中间有不对的地方,希望大家批评指出。

所谓有监督学习就是我们手上的数据是有一个明确的结果(或者label),然后我们可以根据这些数据来创建一个model,通过新的输入数据在这个model上预测或者评估出一个结果。

举个简单的例子来看,假设现在你是一个土豪,手上有很多房子,准备把其中一套房卖了开个小饭店。那么究竟这套房该卖多少钱呢,你可能会看看这套房所在小区及周边已经卖掉的房子卖了多少钱。我们简化一下,假设你周边的房子就和面积相关。然后你发现张三家的50平卖了300万。李四家的70平卖了500万,王二麻子加的100平卖了1000万……,有了这些数据之后,你通过这些数据来进行了一次学习,然后得到了一个model,把自己家房子的面积,比如120平输入到了这个model里面,希望得到一个预估的价格。这个过程就是一个有监督的学习,因为你手上的数据其实是很明确知道之前多少平的房子卖了具体多少钱的。

而无监督学习则是说我们手上的数据其实并没有一个明确的结果,然后我们来分析这些数据的共性或者关系,最后尝试做出一些分类。

同样上面的例子,你的房子已经卖了,现在这个小饭店也开起来了,在雇了几个漂亮的服务员之后你就开始营业了。过了一段时间,你准备看看你卖的菜的情况。然而此时你的数据并没有告诉你哪个菜是什么情况,你没有一个参考的结果,这时你把这些菜的销量拿出来看看,然后你会发现有一系列的菜他们的销量都不错,然后你就把他们归结到了一类。以后要是哪一天有了一个新菜的销量也在这个圈里面,你就同样可以把这个新的菜归到这一类之中了。

除了有监督和无监督,其实还有一个中间状态,我们称之为半监督学习。这个半监督的概念我理解就是你手上有一些数据是可以很明确的知道结果的,但另外一些数据则是没有明确结果的,当我们用这种数据来进行分析的时候,我们就称之为半监督学习。

举个例子,小时候我们学习各种动物,在课堂上老师教了我们这个是鸡,这个是鸭,然后还给我们看了一系列动物照片,但是没有告诉我们这些动物是什么名字。当我们在回家后看到了一只鸡的时候,我们就可以通过老师告诉我们的答案推测出这个新看到的动物就是鸡。但是假如我们遇到了一个新的动物既不是鸡也不是鸭,但我们可以从老师给我们看的一些动物照片中知道,这个新看到的动物其实和那些照片中的某些是一类的,但我们不知道他究竟是什么。这个过程就是一个半监督学习的过程了。



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u011960402/article/details/80354294
个人分类: AI学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

AI从零开始之有监督学习和无监督学习

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭