[HDU 5753] Permutation Bo (期望的线性性质)

HDU - 5753

给定一个数列 C ,以及一个 N的排列 H
如果 Hi比两边的数都大,那么 f(H) 就累加上 Ci
f(H) 的期望取值为多少


根据期望的线性性质,对于 C 中的每一个数
求它被统计入答案的概率,然后再乘以这个数算出贡献

如果它在数列两端,那么一共只有两种排列,所以概率是 12
如果它在数列中间,那么有 3! 种排列,其中 2! 种满足要求,所以概率是 13
注意特判一下 N=1 的情况

#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
using namespace std;
typedef pair<int,int> Pii;
typedef long long LL;
typedef unsigned long long ULL;
typedef double DBL;
typedef long double LDBL;
#define MST(a,b) memset(a,b,sizeof(a))
#define CLR(a) MST(a,0)
#define SQR(a) ((a)*(a))
#define PCUT puts("----------")

const int maxn=1e3+10;

int main()
{
    #ifdef LOCAL
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
    #endif

    int N, C;
    while(~scanf("%d", &N))
    {
        if(N==1)
        {
            scanf("%d", &C);
            printf("%.6f\n", C*1.0);
            continue;
        }
        int sum0=0, sum1=0;
        for(int i=1; i<=N; i++)
        {
            scanf("%d", &C);
            if(i==1 || i==N) sum1 += C;
            else sum0 += C;
        }
        printf("%.6f\n", sum0/3.0+sum1*0.5);
    }
    return 0;
}
### CBAM注意力机制架构图解析 CBAM(Convolutional Block Attention Module)是一种用于增强卷积神经网络特征表示的注意力模块。该模块由两个独立的子模块组成:通道注意力模块(Channel Attention Module, CAM)和空间注意力模块(Spatial Attention Module, SAM),这两个模块按顺序应用于输入特征图。 #### 架构概述 CBAM的整体结构设计旨在通过引入注意力机制,在不显著增计算成本的情况下提高模型性能。具体来说: - **通道注意力模块 (CAM)** 输入特征图首先经过通道注意力处理,生成一个通道级别的注意力建图。这个过程通过对输入特征图的最大池化和平均池化操作提取全局信息,并将其送入一个多层感知器(MLP),最终得到一个与原始特征图大小相同的权重矩阵[^2]。 - **空间注意力模块 (SAM)** 经过通道注意力后的特征图再被传递至空间注意力部分。这里同样采用最大池化和平均池化的组合方式获取每个位置的空间上下文信息,随后利用7x7的卷积核生成一个二维的空间注意力掩码[^4]。 最后,将上述两步产生的注意力建图分别作用于初始特征图上,实现对重要区域或通道的选择性放大,从而优化了整个网络的学习能力[^1]。 #### 结构图示意 虽然无法直接展示图片,以下是基于文字描述构建的一个简化版CBAM流程示意图: ```plaintext Input Feature Map -> Channel Attention -> Spatial Attention -> Output Feature Map ``` 其中, - `Channel Attention` 包含两条路径:Max Pooling 和 Avg Pooling; - `Spatial Attention` 同样包含 Max Pooling 和 Avg Pooling 的并行分支,之后接一个7×7 Conv Layer 来生成最终的空间注意力映射。 这种分阶段逐步细化的方式不仅使得CBAM易于集成到现有CNN框架中,而且能够在保持较低复杂度的同时有效提升多种视觉任务的效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值