容斥原理及其应用

容斥原理及其应用

关键词:容斥原理;路径选择;组合数学

概念

计数是组合数学中常见的一类问题。为了实现无重复无遗漏的计数,可以计先算出总数,再排除不符合条件的数目。 本文介绍了容斥原理的基本定理,并给出了证明,并对广义容斥原理进行了说明,最后用广义容斥原理解决了在限制条件下的路径组合问题,有较强的背景意义。
容斥原理是一种重要的组合数学方法,可以求解任意大小的集合,或者计算复合事件的概率。在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,研究出一种新的计数方法。这种方法的基本思路是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理.要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

容斥原理

定义及证明

假设N是一些目标的集合,并令 S1 ,和 S2 是N的每个目标可能具有或者不具有的2个性质,我们的目的是为了求出N中即不具有性质 S1 ,也不具有性质 S2 的目标的个数按照容斥原理的的原则,我们可以采用下列的步骤:
—-先求出N中所有物体的个数,然后去掉具有性质 S1 ,的目标个数,再去掉具有性质 S2 的物体个数,如果一些目标同时具有 S1 S2 这2种性质,它们就会被去掉2次,那么我们需要再加回这些目标的个数,用符号表示如下
A1=NS1 A2=NS2
集合 A1¯A2¯ 表示既没有 S1 特征,也没有 S2 特征的目标。根据集合论,很容易得到。
这里写图片描述

按照这种理论可以把多个特征推广到n维,那么可以得到以下的定理 定理1 集合N中不具有n个特征的目标个数将有下列公式给出

|A1¯A2¯...An¯|=|N|Σ1in|Ai|+Σ1ijn|AiAj|...(1)m|A1A2...An|

运算规律就是多个的组合,正负性是根据组合数的奇偶性决定的,奇数为负,偶数为正。\
证明: n=2的情况,上述已经讨论过了,现在假设n=3,则根据公式可以推导出,\
|A1¯A2¯An¯|=|N|(|A1|+|A2|+|A3|)+(|A1A2|+|A1A3|+|A3A2|)|A1A2A3| \

这里看到该公式有1+3+3+1=8项.
当n为一般时,该式的左边是对N中的不具有性质 Si (i=1,2,…,n)的物体计数,通过证明增添1
个性质 Si 都不具有的物体会使公式的右边净增加,增添1个至少具有1个性质的物体使公式的右
边净增0来建立公式的合理性.
首先,添加1个性质 Si 都不具有的物体x,公式右边的净增加数为:1-0+0-0+0-..-+
(1)m 0=1;因为它在S中而不在其他子集 Ai 中.考虑恰好具有n( n1 )个性质 Si ;(i=1,2,…,n)的物体r,r这一个物体在|N|中所占数量是 1=C0n ..由于r恰有n个性质,它为子集 A1 , A2 , A3 , An 中恰好n个的成。它对 |Ai| 提供的值为 n=C1n 。由于我们可以以¥ C2n 种方式选择r具有一对性质 Si Sj ,而r恰好是形式为 AiAj 那些集合中的 C2n 个成员,因此,r给 ΣAiAj 那些集合提供 C2n 个成员,同理,r对给 ΣAiAjAk 提供数值为 C3n 等等,于是r对公式(1)右边的净增为\

C0nC1n+C2n...+(1)mCmn

由于 nm ,上式等于 C0nC1n+C2n...+(1)mCmn = (11)m = 0.因此,如果r至少具有一个性质,那么它对公式(1)右边的净增数为0,定理得证。

图论中的应用

给定一个有限的无向图G = (V, E) ,这里V是顶点集, E是边集,且完全子图定义为:它的顶点是V的子集,在这些顶点中任两点都有E中的边相连接. 一个具有k个顶点的完全子图称为一个完全k-子图. 下面假定2≤k≤n,其中n是G的顶点数,顶点v∈V 的次数记为d(v) ,定义为以v作为一个端点的边数. 显然,若一个图G不包含完全k-子图,则存在关于它的顶点的次数和它的边数的某些限制,Zarankiewicz的证明采用了反证法,巧妙的应用了容斥原理的对偶形式得到一个与题设矛盾的结论。\
此外,应用容斥原理可以求出图顶点染色的色多项式.\
假设有4个顶点的圈,顶点和边数依次为 V=a,b,c,d,E=(a,b),(b,c),(c,d),(d,a)=e1,e2,e3,e4, 计性质 A1,A2,A3,A4 分别为 ab,bc,cd,da 染色相同,现有x种色彩,染色的要求是相邻的顶点不能是同一种颜色,正常染色的数目记为P(G,x)(称为色多项式)则 P(G,x)=N(A1A2A3A4) = x|V|+Σ|E|i=1N(Ai)+ΣN(AiAj)ΣAiAjAk+N(A1A2A3A4) \
用容斥原理可得

P(G,x)=x44x3+6x24x+x=x44x3+6x23x

广义容斥原理

首先定义集合N和性质 A1,A2,...An (0)=|N|
(1)=σ|Ai|
(2)=σ|AiAj|
….
(n)=|A1A2...An|
α(m) 计数了具有m+k个性质的元素 Cm+km 次。
定理 广义容斥原理定义如下:给定集合N和性质 A1,A2,...An ,则 βm 定义为集合N中恰有m个性质的个数

βm=mCm+1mm+1+Cm+2mm+2....(1)nmCnmn

考虑特殊情况,当m=0的时候,即可得到以下公式:
β0=01+2...(1)nn

也就是上述讨论的没有相同元素的交集情形。

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值