OpenCV图像处理
这门课程主要是讲授计算机中的图像的基本概念和预处理技术。
图像预处理在AI中的应用场景:
-
图像预处理的目的,是让图像数据更适合AI模型进行处理,例如调整大小、颜色
-
通过图像预处理技术,实现数据集的扩充,这种方法称为数据增强。数据增强主要方法有:缩放,拉伸,加入噪点,翻转,旋转,平移,剪切,对比度调整,通道变化。

1.计算机视觉概述
1.1 基本概念
计算机视觉(Computer Vision, 简称CV)在广义上是和图像相关的技术总称。包括图像的采集获取,图像的压缩编码,图像的存储和传输,图像的合成,三维图像重建,图像增强,图像修复,图像的分类和识别,目标的检测、跟踪、表达和描述,特征提取,图像的显示和输出等等。
计算机视觉技术已经在许多领域得到了广泛的
本文详细介绍了OpenCV在计算机视觉中的应用,包括图像预处理技术、颜色处理、形态操作和图像梯度处理等。通过实例讲解了OpenCV库如何进行图像读取、灰度化、直方图均衡化、色彩提取、二值化、仿射变换、图像裁剪、算术运算、边缘检测等操作,以及在视频处理中的应用。文章旨在帮助读者掌握OpenCV在图像处理中的核心技术和实践技巧。
订阅专栏 解锁全文
1688

被折叠的 条评论
为什么被折叠?



