《Outlier Analysis 2nd Edition》- Contents

《Outlier Analysis 2nd Edition》一书的目录

1 An Introduction to Outlier Analysis 1
1.1 Introduction … … … … … … … … … … … … 1
1.2 The DataModel is Everything … … … … … … … … . 5
1.2.1 Connections with Supervised Models … … … … … … 8
1.3 The Basic Outlier Detection Models … … … … … … … . 10
1.3.1 Feature Selection in Outlier Detection … … … … … . . 10
1.3.2 Extreme-Value Analysis … … … … … … … … . 11
1.3.3 Probabilistic and Statistical Models … … … … … … 12
1.3.4 LinearModels … … … … … … … … … … 13
1.3.4.1 Spectral Models … … … … … … … … 14
1.3.5 Proximity-BasedModels … … … … … … … … . 14
1.3.6 Information-TheoreticModels … … … … … … … . 16
1.3.7 High-Dimensional Outlier Detection … … … … … … 17
1.4 Outlier Ensembles … … … … … … … … … … . . 18
1.4.1 Sequential Ensembles … … … … … … … … . . 19
1.4.2 Independent Ensembles … … … … … … … … . 20
1.5 The Basic Data Types for Analysis … … … … … … … . . 21
1.5.1 Categorical, Text, andMixed Attributes … … … … … . 21
1.5.2 When the Data Values have Dependencies … … … … … 21
1.5.2.1 Times-Series Data and Data Streams … … … … 22
1.5.2.2 Discrete Sequences … … … … … … … . . 24
1.5.2.3 Spatial Data … … … … … … … … . . 24
1.5.2.4 Network and Graph Data … … … … … … . 25
1.6 Supervised Outlier Detection … … … … … … … … . . 25
1.7 Outlier Evaluation Techniques … … … … … … … … . . 26
1.7.1 Interpreting the ROC AUC … … … … … … … . . 29
1.7.2 CommonMistakes in Benchmarking … … … … … … 30
1.8 Conclusions and Summary … … … … … … … … … . 31
1.9 Bibliographic Survey … … … … … … … … … … . 31
1.10 Exercises … … … … … … … … … … … … . 33
2 Probabilistic Models for Outlier Detection 35
2.1 Introduction … … … … … … … … … … … … 35
2.2 StatisticalMethods for Extreme-Value Analysis … … … … … . 37
2.2.1 Probabilistic Tail Inequalities … … … … … … … . 37
2.2.1.1 Sum of Bounded Random Variables … … … … . 38
2.2.2 Statistical-Tail Confidence Tests … … … … … … . . 43
2.2.2.1 t-Value Test … … … … … … … … . . 43
2.2.2.2 Sum of Squares of Deviations … … … … … . . 45
2.2.2.3 Visualizing Extreme Values with Box Plots … … … 45
2.3 Extreme-Value Analysis inMultivariate Data … … … … … . . 46
2.3.1 Depth-BasedMethods … … … … … … … … . . 47
2.3.2 Deviation-BasedMethods … … … … … … … … 48
2.3.3 Angle-Based Outlier Detection … … … … … … … 49
2.3.4 Distance Distribution-based Techniques: The Mahalanobis Method . 51
2.3.4.1 Strengths of theMahalanobisMethod … … … … 53
2.4 Probabilistic Mixture Modeling for Outlier Analysis … … … … . 54
2.4.1 Relationship with ClusteringMethods … … … … … . . 57
2.4.2 The Special Case of a SingleMixture Component … … … . . 58
2.4.3 OtherWays of Leveraging the EMModel … … … … … 58
2.4.4 An Application of EM for Converting Scores to Probabilities … . 59
2.5 Limitations of Probabilistic Modeling … … … … … … … . 60
2.6 Conclusions and Summary … … … … … … … … … . 61
2.7 Bibliographic Survey … … … … … … … … … … . 61
2.8 Exercises … … … … … … … … … … … … . 62
3 Linear Models for Outlier Detection 65
3.1 Introduction … … … … … … … … … … … … 65
3.2 Linear RegressionModels … … … … … … … … … . 68
3.2.1 Modeling with Dependent Variables … … … … … … 70
3.2.1.1 Applications of Dependent VariableModeling … … . . 73
3.2.2 Linear Modeling with Mean-Squared Projection Error … … . . 74
3.3 Principal Component Analysis … … … … … … … … . 75
3.3.1 Connections with the Mahalanobis Method … … … … . . 78
3.3.2 Hard PCA versus Soft PCA … … … … … … … . . 79
3.3.3 Sensitivity to Noise … … … … … … … … … . 79
3.3.4 Normalization Issues … … … … … … … … … 80
3.3.5 Regularization Issues … … … … … … … … … 80
3.3.6 Applications to Noise Correction … … … … … … . . 80
3.3.7 How Many Eigenvectors? … … … … … … … … 81
3.3.8 Extension to Nonlinear Data Distributions … … … … . . 83
3.3.8.1 Choice of SimilarityMatrix … … … … … … 85
3.3.8.2 Practical Issues … … … … … … … … . 86
3.3.8.3 Application to Arbitrary Data Types … … … … 88
3.4 One-Class Support Vector Machines … … … … … … … . 88
3.4.1 Solving the Dual Optimization Problem … … … … … . 92
3.4.2 Practical Issues … … … … … … … … … … 92
3.4.3 Connections to Support Vector Data Description and Other Kernel
Models … … … … … … … … … … … . 93
3.5 AMatrix Factorization View of LinearModels … … … … … . 95
3.5.1 Outlier Detection in Incomplete Data … … … … … . . 96
3.5.1.1 Computing the Outlier Scores … … … … … . 98
3.6 Neural Networks: FromLinearModels to Deep Learning … … … . . 98
3.6.1 Generalization to NonlinearModels … … … … … … 101
3.6.2 Replicator Neural Networks and Deep Autoencoders … … … 102
3.6.3 Practical Issues … … … … … … … … … … 105
3.6.4 The Broad Potential of Neural Networks … … … … … . 106
3.7 Limitations of LinearModeling … … … … … … … … . 106
3.8 Conclusions and Summary … … … … … … … … … . 107
3.9 Bibliographic Survey … … … … … … … … … … . 108
3.10 Exercises … … … … … … … … … … … … . 109
4 Proximity-Based Outlier Detection 111
4.1 Introduction … … … … … … … … … … … … 111
4.2 Clusters and Outliers: The Complementary Relationship … … … . . 112
4.2.1 Extensions to Arbitrarily Shaped Clusters … … … … … 115
4.2.1.1 Application to Arbitrary Data Types … … … … 118
4.2.2 Advantages and Disadvantages of ClusteringMethods … … . . 118
4.3 Distance-Based Outlier Analysis … … … … … … … … 118
4.3.1 Scoring Outputs for Distance-BasedMethods … … … … . 119
4.3.2 Binary Outputs for Distance-BasedMethods … … … … . 121
4.3.2.1 Cell-Based Pruning … … … … … … … . 122
4.3.2.2 Sampling-Based Pruning … … … … … … . 124
4.3.2.3 Index-Based Pruning … … … … … … … 126
4.3.3 Data-Dependent SimilarityMeasures … … … … … … 128
4.3.4 ODIN: A Reverse Nearest Neighbor Approach… … … … . 129
4.3.5 Intensional Knowledge of Distance-Based Outliers … … … . 130
4.3.6 Discussion of Distance-BasedMethods … … … … … . . 131
4.4 Density-Based Outliers … … … … … … … … … … 131
4.4.1 LOF: Local Outlier Factor … … … … … … … … 132
4.4.1.1 Handling Duplicate Points and Stability Issues … … . 134
4.4.2 LOCI: Local Correlation Integral … … … … … … . . 135
4.4.2.1 LOCI Plot … … … … … … … … … 136
4.4.3 Histogram-Based Techniques … … … … … … … . 137
4.4.4 Kernel Density Estimation … … … … … … … . . 138
4.4.4.1 Connection with Harmonic k-Nearest Neighbor Detector . 139
4.4.4.2 Local Variations of KernelMethods … … … … . 140
4.4.5 Ensemble-Based Implementations of Histograms and Kernel Methods 140
4.5 Limitations of Proximity-Based Detection … … … … … … . 141
4.6 Conclusions and Summary … … … … … … … … … . 142
4.7 Bibliographic Survey … … … … … … … … … … . 142
4.8 Exercises … … … … … … … … … … … … . 146
5 High-Dimensional Outlier Detection 149
5.1 Introduction … … … … … … … … … … … … 149
5.2 Axis-Parallel Subspaces … … … … … … … … … . . 152
5.2.1 Genetic Algorithms for Outlier Detection … … … … … 153
5.2.1.1 Defining Abnormal Lower-Dimensional Projections … . . 153
5.2.1.2 Defining Genetic Operators for Subspace Search … … 154
5.2.2 Finding Distance-Based Outlying Subspaces … … … … . . 157
5.2.3 Feature Bagging: A Subspace Sampling Perspective … … … 157
5.2.4 Projected Clustering Ensembles … … … … … … … 158
5.2.5 Subspace Histograms in Linear Time … … … … … … 160
5.2.6 Isolation Forests … … … … … … … … … . . 161
5.2.6.1 Further Enhancements for Subspace Selection … … . 163
5.2.6.2 Early Termination … … … … … … … . . 163
5.2.6.3 Relationship to Clustering Ensembles and Histograms … 164
5.2.7 Selecting High-Contrast Subspaces … … … … … … . 164
5.2.8 Local Selection of Subspace Projections … … … … … . 166
5.2.9 Distance-Based Reference Sets … … … … … … … 169
5.3 Generalized Subspaces … … … … … … … … … … 170
5.3.1 Generalized Projected Clustering Approach … … … … . . 171
5.3.2 Leveraging Instance-Specific Reference Sets … … … … . . 172
5.3.3 Rotated Subspace Sampling … … … … … … … . . 175
5.3.4 Nonlinear Subspaces … … … … … … … … … 176
5.3.5 RegressionModeling Techniques … … … … … … . . 178
5.4 Discussion of Subspace Analysis … … … … … … … … . 178
5.5 Conclusions and Summary … … … … … … … … … . 180
5.6 Bibliographic Survey … … … … … … … … … … . 181
5.7 Exercises … … … … … … … … … … … … . 184
6 Outlier Ensembles 185
6.1 Introduction … … … … … … … … … … … … 185
6.2 Categorization and Design of EnsembleMethods … … … … … 188
6.2.1 Basic Score Normalization and CombinationMethods … … . . 189
6.3 Theoretical Foundations of Outlier Ensembles … … … … … . . 191
6.3.1 What is the Expectation Computed Over? … … … … … 195
6.3.2 Relationship of Ensemble Analysis to Bias-Variance Trade-Off… . 195
6.4 Variance ReductionMethods … … … … … … … … . . 196
6.4.1 Parametric Ensembles … … … … … … … … . . 197
6.4.2 Randomized Detector Averaging … … … … … … . . 199
6.4.3 Feature Bagging: An Ensemble-Centric Perspective … … … . 199
6.4.3.1 Connections to Representational Bias … … … … 200
6.4.3.2 Weaknesses of Feature Bagging … … … … … . 202
6.4.4 Rotated Bagging … … … … … … … … … . . 202
6.4.5 Isolation Forests: An Ensemble-Centric View … … … … . 203
6.4.6 Data-Centric Variance Reduction with Sampling … … … . . 205
6.4.6.1 Bagging … … … … … … … … … . . 205
6.4.6.2 Subsampling … … … … … … … … . . 206
6.4.6.3 Variable Subsampling … … … … … … … 207
6.4.6.4 Variable Subsampling with Rotated Bagging (VR) … . . 209
6.4.7 Other Variance ReductionMethods … … … … … … 209
6.5 Flying Blind with Bias Reduction … … … … … … … … 211
6.5.1 Bias Reduction by Data-Centric Pruning … … … … … 211
6.5.2 Bias Reduction byModel-Centric Pruning … … … … … 212
6.5.3 Combining Bias and Variance Reduction … … … … … . 213
6.6 Model Combination for Outlier Ensembles … … … … … … . 214
6.6.1 Combining ScoringMethods with Ranks … … … … … . 215
6.6.2 Combining Bias and Variance Reduction … … … … … . 216
6.7 Conclusions and Summary … … … … … … … … … . 217
6.8 Bibliographic Survey … … … … … … … … … … . 217
6.9 Exercises … … … … … … … … … … … … . 218
7 Supervised Outlier Detection 219
7.1 Introduction … … … … … … … … … … … … 219
7.2 Full Supervision: Rare Class Detection … … … … … … … 221
7.2.1 Cost-Sensitive Learning … … … … … … … … . 223
7.2.1.1 MetaCost: A Relabeling Approach … … … … . . 223
7.2.1.2 WeightingMethods … … … … … … … . 225
7.2.2 Adaptive Re-sampling … … … … … … … … . . 228
7.2.2.1 Relationship betweenWeighting and Sampling … … . 229
7.2.2.2 Synthetic Over-sampling: SMOTE … … … … . . 229
7.2.3 BoostingMethods … … … … … … … … … . 230
7.3 Semi-Supervision: Positive and Unlabeled Data … … … … … . 231
7.4 Semi-Supervision: Partially Observed Classes … … … … … . . 232
7.4.1 One-Class Learning with Anomalous Examples … … … … 233
7.4.2 One-Class Learning with Normal Examples … … … … . . 234
7.4.3 Learning with a Subset of Labeled Classes … … … … … 234
7.5 Unsupervised Feature Engineering in SupervisedMethods … … … . 235
7.6 Active Learning … … … … … … … … … … … . 236
7.7 Supervised Models for Unsupervised Outlier Detection … … … … 239
7.7.1 Connections with PCA-Based Methods … … … … … . 242
7.7.2 Group-wise Predictions for High-Dimensional Data … … … . 243
7.7.3 Applicability to Mixed-Attribute Data Sets … … … … . . 244
7.7.4 Incorporating Column-wise Knowledge … … … … … . . 244
7.7.5 Other ClassificationMethods with Synthetic Outliers … … . . 244
7.8 Conclusions and Summary … … … … … … … … … . 245
7.9 Bibliographic Survey … … … … … … … … … … . 245
7.10 Exercises … … … … … … … … … … … … . 247
8 Categorical, Text, and Mixed Attribute Data 249
8.1 Introduction … … … … … … … … … … … … 249
8.2 Extending Probabilistic Models to Categorical Data … … … … . 250
8.2.1 ModelingMixed Data … … … … … … … … . . 253
8.3 Extending LinearModels to Categorical andMixed Data … … … . 254
8.3.1 Leveraging Supervised RegressionModels … … … … … 254
8.4 Extending ProximityModels to Categorical Data … … … … … 255
8.4.1 Aggregate Statistical Similarity … … … … … … … 256
8.4.2 Contextual Similarity … … … … … … … … . . 257
8.4.2.1 Connections to Linear Models … … … … … . 258
8.4.3 Issues withMixed Data … … … … … … … … . 259
8.4.4 Density-BasedMethods … … … … … … … … . 259
8.4.5 ClusteringMethods … … … … … … … … … 259
8.5 Outlier Detection in Binary and Transaction Data … … … … . . 260
8.5.1 Subspace Methods … … … … … … … … … . 260
8.5.2 Novelties in Temporal Transactions … … … … … … . 262
8.6 Outlier Detection in Text Data … … … … … … … … . 262
8.6.1 Probabilistic Models … … … … … … … … … 262
8.6.2 LinearModels: Latent Semantic Analysis … … … … … 264
8.6.2.1 Probabilistic Latent Semantic Analysis (PLSA) … … . 265
8.6.3 Proximity-BasedModels … … … … … … … … . 268
8.6.3.1 First Story Detection … … … … … … … 269
8.7 Conclusions and Summary … … … … … … … … … . 270
8.8 Bibliographic Survey … … … … … … … … … … . 270
8.9 Exercises … … … … … … … … … … … … . 272
9 Time Series and Streaming Outlier Detection 273
9.1 Introduction … … … … … … … … … … … … 273
9.2 Predictive Outlier Detection in Streaming Time-Series … … … … 276
9.2.1 AutoregressiveModels … … … … … … … … . . 276
9.2.2 Multiple Time Series RegressionModels … … … … … . 279
9.2.2.1 Direct Generalization of AutoregressiveModels … … . 279
9.2.2.2 Time-Series Selection Methods … … … … … . 281
9.2.2.3 Principal Component Analysis and Hidden Variable-Based
Models … … … … … … … … … . . 282
9.2.3 Relationship between Unsupervised Outlier Detection and Prediction 284
9.2.4 Supervised Point Outlier Detection in Time Series … … … . 284
9.3 Time-Series of Unusual Shapes … … … … … … … … . 286
9.3.1 Transformation to Other Representations … … … … … 287
9.3.1.1 NumericMultidimensional Transformations … … … 288
9.3.1.2 Discrete Sequence Transformations … … … … . . 290
9.3.1.3 Leveraging Trajectory Representations of Time Series … 291
9.3.2 Distance-BasedMethods … … … … … … … … . 293
9.3.2.1 Single Series versusMultiple Series … … … … . . 295
9.3.3 Probabilistic Models … … … … … … … … … 295
9.3.4 LinearModels … … … … … … … … … … 295
9.3.4.1 Univariate Series … … … … … … … … 295
9.3.4.2 Multivariate Series … … … … … … … . . 296
9.3.4.3 Incorporating Arbitrary Similarity Functions … … . . 297
9.3.4.4 Leveraging KernelMethods with LinearModels … … 298
9.3.5 SupervisedMethods for Finding Unusual Time-Series Shapes … . 298
9.4 Multidimensional Streaming Outlier Detection … … … … … . 298
9.4.1 Individual Data Points as Outliers … … … … … … . 299
9.4.1.1 Proximity-Based Algorithms … … … … … . . 299
9.4.1.2 Probabilistic Algorithms … … … … … … . 301
9.4.1.3 High-Dimensional Scenario … … … … … … 301
9.4.2 Aggregate Change Points as Outliers … … … … … … 301
9.4.2.1 Velocity Density EstimationMethod … … … … . 302
9.4.2.2 Statistically Significant Changes in Aggregate Distributions 304
9.4.3 Rare and Novel Class Detection in Multidimensional Data Streams . 305
9.4.3.1 Detecting Rare Classes … … … … … … . . 305
9.4.3.2 Detecting Novel Classes … … … … … … . . 306
9.4.3.3 Detecting Infrequently Recurring Classes … … … . 306
9.5 Conclusions and Summary … … … … … … … … … . 307
9.6 Bibliographic Survey … … … … … … … … … … . 307
9.7 Exercises … … … … … … … … … … … … . 310
10 Outlier Detection in Discrete Sequences 311
10.1 Introduction … … … … … … … … … … … … 311
10.2 Position Outliers … … … … … … … … … … … 313
10.2.1 Rule-BasedModels … … … … … … … … … . 315
10.2.2 MarkovianModels … … … … … … … … … . 316
10.2.3 Efficiency Issues: Probabilistic Suffix Trees … … … … . . 318
10.3 Combination Outliers … … … … … … … … … … 320
10.3.1 A Primitive Model for Combination Outlier Detection … … . . 322
10.3.1.1 Model-Specific Combination Issues … … … … . . 323
10.3.1.2 Easier Special Cases … … … … … … … . 323
10.3.1.3 Relationship between Position and Combination Outliers . 324
10.3.2 Distance-BasedModels … … … … … … … … . 324
10.3.2.1 Combining Anomaly Scores from Comparison Units … . 326
10.3.2.2 Some Observations on Distance-BasedMethods … … 327
10.3.2.3 Easier Special Case: Short Sequences … … … … 327
10.3.3 Frequency-BasedModels … … … … … … … … . 327
10.3.3.1 Frequency-Based Model with User-Specified Comparison Unit327
10.3.3.2 Frequency-Based Model with Extracted Comparison Units 328
10.3.3.3 Combining Anomaly Scores from Comparison Units … . 329
10.3.4 HiddenMarkovModels … … … … … … … … . 329
10.3.4.1 Design Choices in a HiddenMarkovModel … … … 331
10.3.4.2 Training and Prediction with HMMs … … … … . 333
10.3.4.3 Evaluation: Computing the Fit Probability for Observed Sequences
… … … … … … … … … . . 334
10.3.4.4 Explanation: Determining the Most Likely State Sequence
for Observed Sequence … … … … … … . . 334
10.3.4.5 Training: Baum-Welch Algorithm … … … … . . 335
10.3.4.6 Computing Anomaly Scores … … … … … … 336
10.3.4.7 Special Case: Short Sequence Anomaly Detection … . . 337
10.3.5 Kernel-Based Methods … … … … … … … … . . 337
10.4 Complex Sequences and Scenarios … … … … … … … . . 338
10.4.1 Multivariate Sequences … … … … … … … … . . 338
10.4.2 Set-Based Sequences … … … … … … … … … 339
10.4.3 Online Applications: Early Anomaly Detection … … … … 340
10.5 Supervised Outliers in Sequences … … … … … … … … 340
10.6 Conclusions and Summary … … … … … … … … … . 342
10.7 Bibliographic Survey … … … … … … … … … … . 342
10.8 Exercises … … … … … … … … … … … … . 344
11 Spatial Outlier Detection 345
11.1 Introduction … … … … … … … … … … … … 345
11.2 Spatial Attributes are Contextual … … … … … … … … 349
11.2.1 Neighborhood-Based Algorithms … … … … … … . . 349
11.2.1.1 MultidimensionalMethods … … … … … … 350
11.2.1.2 Graph-BasedMethods … … … … … … … 351
11.2.1.3 The Case ofMultiple Behavioral Attributes … … … 351
11.2.2 AutoregressiveModels … … … … … … … … . . 352
11.2.3 Visualization with Variogram Clouds … … … … … … 353
11.2.4 Finding Abnormal Shapes in Spatial Data … … … … … 355
11.2.4.1 Contour ExtractionMethods … … … … … . . 356
11.2.4.2 ExtractingMultidimensional Representations … … . . 360
11.2.4.3 MultidimensionalWavelet Transformation … … … 360
11.2.4.4 Supervised Shape Discovery … … … … … . . 360
11.2.4.5 Anomalous Shape Change Detection … … … … . 361
11.3 Spatiotemporal Outliers with Spatial and Temporal Context … … … 362
11.4 Spatial Behavior with Temporal Context: Trajectories … … … … 363
11.4.1 Real-Time Anomaly Detection … … … … … … … 363
11.4.2 Unusual Trajectory Shapes … … … … … … … . . 363
11.4.2.1 Segment-wise PartitioningMethods … … … … . 363
11.4.2.2 Tile-Based Transformations … … … … … … 364
11.4.2.3 Similarity-Based Transformations … … … … . . 365
11.4.3 Supervised Outliers in Trajectories … … … … … … . 365
11.5 Conclusions and Summary … … … … … … … … … . 366
11.6 Bibliographic Survey … … … … … … … … … … . 366
11.7 Exercises … … … … … … … … … … … … . 367
12 Outlier Detection in Graphs and Networks 369
12.1 Introduction … … … … … … … … … … … … 369
12.2 Outlier Detection in Many Small Graphs … … … … … … . . 371
12.2.1 Leveraging Graph Kernels … … … … … … … … 371
12.3 Outlier Detection in a Single Large Graph … … … … … … . 372
12.3.1 Node Outliers … … … … … … … … … … . 372
12.3.1.1 Leveraging theMahalanobisMethod … … … … . 374
12.3.2 Linkage Outliers … … … … … … … … … . . 374
12.3.2.1 Matrix FactorizationMethods … … … … … . 374
12.3.2.2 Spectral Methods and Embeddings … … … … . . 378
12.3.2.3 ClusteringMethods … … … … … … … . 379
12.3.2.4 Community Linkage Outliers … … … … … . . 380
12.3.3 Subgraph Outliers … … … … … … … … … . 381
12.4 Node Content in Outlier Analysis … … … … … … … … 382
12.4.1 SharedMatrix Factorization … … … … … … … . . 382
12.4.2 Relating Feature Similarity to Tie Strength … … … … . . 383
12.4.3 Heterogeneous Markov Random Fields … … … … … . . 384
12.5 Change-Based Outliers in Temporal Graphs … … … … … … 384
12.5.1 Discovering Node Hotspots in Graph Streams … … … … . 385
12.5.2 Streaming Detection of Linkage Anomalies … … … … . . 386
12.5.3 Outliers Based on Community Evolution… … … … … . 388
12.5.3.1 Integrating Clustering Maintenance with Evolution Analysis 388
12.5.3.2 Online Analysis of Community Evolution in Graph Streams 390
12.5.3.3 GraphScope … … … … … … … … . . 390
12.5.4 Outliers Based on Shortest Path Distance Changes … … … . 392
12.5.5 Matrix Factorization and Latent EmbeddingMethods … … . . 392
12.6 Conclusions and Summary … … … … … … … … … . 393
12.7 Bibliographic Survey … … … … … … … … … … . 394
12.8 Exercises … … … … … … … … … … … … . 396
13 Applications of Outlier Analysis 399
13.1 Introduction … … … … … … … … … … … … 399
13.2 Quality Control and Fault Detection Applications … … … … … 401
13.3 Financial Applications … … … … … … … … … … 404
13.4 Web Log Analytics … … … … … … … … … … . . 406
13.5 Intrusion and Security Applications … … … … … … … . . 407
13.6 Medical Applications … … … … … … … … … … . 410
13.7 Text and SocialMedia Applications … … … … … … … . 411
13.8 Earth Science Applications … … … … … … … … … 413
13.9 Miscellaneous Applications … … … … … … … … … 415
13.10Guidelines for the Practitioner … … … … … … … … . 416
13.10.1Which Unsupervised AlgorithmsWork Best? … … … … . 418
13.11Resources for the Practitioner … … … … … … … … . . 421
13.12Conclusions and Summary … … … … … … … … … . 422

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值