经典面试题:订单超时问题(1)

经典面试题:订单超时问题

问题引出

外卖、京东淘宝拼多多抖音商城下单、机票火车票门票、酒店饭店预定、上门服务、限时抽奖、限时优惠券……
支付剩余时间

候选解决方案

  • 方案1:定时任务Scheduled
  • 方案2:延时队列DelayQueue
  • 方案3:时间轮算法HashedWheelTimer
  • 方案4:Redis事件通知机制
  • 方案5:MQ消息队列

方案1:定时任务Scheduled

(好用又方便,首选SpringBoot)

方案思路

1. 使用数据库或缓存来保存订单数据;
2. Spring框架内置的Scheduled组件来做定时器;
3. 指定间隔时间获取未付款订单,逐条检查是否过期。

(示例代码仅展示核心的“超时”逻辑)

依赖、配置和核心代码

pom.xml

    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.6.3</version>
    </parent>
    
    <dependencies>
    	<dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        
        <!-- hutool工具包,非必要 -->
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.7.3</version>
        </dependency>
        
        <!-- lombok,非必要 -->
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
        </dependency>
    </dependencies>

没有任何特殊依赖,就是一个普通SpringBoot项目


application.yml

server:
  port: 18080

spring:
  application:
    name: springboot-commontest

也没有任何特殊配置


import cn.hutool.core.thread.ThreadUtil;
import org.springframework.scheduling.annotation.Async;
import org.springframework.scheduling.annotation.EnableAsync;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import java.time.LocalTime;
import java.time.format.DateTimeFormatter;

@EnableScheduling   
<think>好的,用户需要寻找关于Java面试中涉及三高(高性能、高并发、高可用)项目的场景题。首先,我需要明确用户的具体需求,可能是在准备面试时需要实际案例或问题来展示自己的经验。用户提到的三高系统设计是常见的面试考察点,尤其是对于中高级开发岗位。 接下来,我需要结合提供的引用内容来生成相关的问题和答案。引用[1]提到用户有高并发、高性能、高可用系统架构设计经验,以及性能调优经验,这可能涉及到具体的项目案例。引用[2]、[3]和[4]涉及Java并发、线程池、锁机制、死锁预防、分布式事务(如2PC)等内容,这些都是三高系统设计中常见的技术点。 用户需要场景题,这意味着问题应基于实际应用场景,考察候选人如何解决具体的高性能、高并发或高可用问题。因此,我应该设计一些典型的面试问题,并给出详细的解答,涵盖技术选型、架构设计、优化策略等方面。 例如,高并发场景下的秒杀系统设计是一个经典问题,可以考察缓存、限流、队列等技术。另一个例子是分布式锁的实现,涉及Redis或ZooKeeper的选择。高可用方面,可能需要讨论微服务架构中的容错机制,如Hystrix或Sentinel。 在生成答案时,需要确保结构清晰,分步骤解释解决方案,同时引用相关的知识点,如线程池管理、volatile关键字、分布式事务的缺陷(引用[4]提到的2PC问题)等。此外,要符合用户提供的格式要求,使用中文,正确应用LaTeX语法,并在适当的位置添加引用标识。 最后,还需要生成相关问题,帮助用户进一步扩展知识面,覆盖更多可能的面试题目。需要检查所有引用是否恰当,技术点是否准确,以及是否符合用户的具体需求。</think>### Java三高场景题解析 #### 一、秒杀系统设计(高并发场景) **问题**:设计一个支持每秒10万请求的秒杀系统,如何保证库存不超卖和系统稳定性? **解决方案**: 1. **分层削峰**: - 前端使用验证码、答题机制过滤无效请求 - 接入层通过Nginx限流(漏桶算法)控制请求速率 - 使用消息队列(如Kafka)异步处理订单$$QPS = \frac{\text{最大承载请求}}{\text{处理时间}}$$[^2] 2. **库存预扣**: ```java // Redis原子操作实现预扣库存 Long stock = redisTemplate.execute( "if redis.call('exists', KEYS[1]) == 1 then\n" + " local stock = tonumber(redis.call('get', KEYS[1]))\n" + " if stock > 0 then\n" + " return redis.call('decr', KEYS[1])\n" + " end\n" + "end\n" + "return -1", Collections.singletonList("stock_key")); ``` 3. **熔断降级**: - 配置Sentinel熔断规则,当QPS超过阈值时快速失败 - 降级策略:返回兜底数据(如"活动太火爆,请稍后重试") **关键技术点**:分布式锁、异步处理、缓存击穿防护[^1][^3] --- #### 二、支付系统对账(高性能场景) **问题**:如何设计日交易量1亿笔的支付对账系统? **优化方案**: 1. **分片处理**: - 按商户ID哈希分片,多线程并行处理 - 使用ForkJoinPool实现工作窃取算法$$T_{\text{总}} = \max(T_{\text{分片1}}, T_{\text{分片2}}, ..., T_{\text{分片n}})$$ 2. **内存计算**: ```java // 使用ConcurrentHashMap分段存储交易数据 ConcurrentHashMap<String, Transaction> localCache = new ConcurrentHashMap<>(1000000); // 批处理采用CopyOnWriteArrayList保证读写分离 ``` 3. **索引优化**: - 对账主键建立覆盖索引 - 使用Elasticsearch实现多维度快速查询 --- #### 三、微服务熔断(高可用场景) **问题**:如何保证分布式系统在部分节点故障时的可用性? **实现方案**: | 策略 | 实现方式 | 阈值配置 | |--------------|-----------------------------|---------------------| | 熔断 | Hystrix断路器模式 | 错误率>50%持续10秒 | | 降级 | 返回缓存数据/默认响应 | CPU使用率>80% | | 限流 | Sentinel令牌桶算法 | 单节点QPS=5000 | | 自动恢复 | Spring Retry重试机制 | 最大重试次数=3 | **注意事项**: 1. 避免级联故障(设置服务调用超时) 2. 实施健康检查(如Kubernetes探针) 3. 采用最终一致性替代强一致性(解决2PC效率问题)[^4] ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值