HDU 5000 Clone 猜想性质 DP

题意:克隆人有n个属性,给出每个属性的最大值,属性值的范围从0到最大值。如果A的所有能力值比B低,那A不能存活。问,最多可以有多少人存活。

思路:看了离散的偏序,重新写一下吧。

          首先,A的能力值比B高,这个就定义了一个偏序关系。 而能够共存的人,就是对应了一条反链(即,相互之间不能比大小)。

          根据dilworth定理,最大反链的大小等于最小的链的个数,使这些连覆盖所有的点。

          我们就要找到整个图中最大的宽度。

          这个有点类似于掷几个筛子,求这些色子点的和的最大概率,整个方案分布类似有二项分布或正太分布,那么方案数的最大值是在中位数中取到。

          我们能有dp方程求出前i个属性,和为j的方案数。那么最后的答案就是dp[n][sum/2];

代码如下:

#include <cstdio>
#include <algorithm>
#include <cstring>

using namespace std;

const int MAX = 3000;
const int MOD  = 1e9 + 7;

int T,N;
int sum;
int dp[MAX][MAX];
int t[MAX];

int main(void)
{
    //freopen("input.txt","r",stdin);
    scanf("%d", &T);
    while(T--){
        scanf("%d", &N);
        sum = 0;
        for(int i = 0; i < N; ++i){
            scanf("%d", &t[i]);
            sum += t[i];
        }
        memset(dp,0,sizeof(dp));
        dp[0][0] = 1;
        for(int i = 0 ; i < N; ++i)
            for(int j = 0; j <=sum; ++j)
                for(int k = 0; k <= t[i]; ++k)
                    dp[i+1][j+k] = (dp[i+1][j+k] + dp[i][j]) % MOD;
        printf("%d\n",dp[N][sum / 2]);
    }
    return 0;
}

展开阅读全文

没有更多推荐了,返回首页