python中yield用法

参考:http://blog.163.com/l_greatsea/blog/static/2049860442013220113640476/
   http://www.cnblogs.com/fangyuan1004/p/4571304.html
   http://www.cnblogs.com/tqsummer/archive/2010/12/27/1917927.html
   http://blog.csdn.net/alvine008/article/details/43410079

迭代器

  在Python中,for循环可以用于Python中的任何类型,包括列表、元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器。

  迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发StopIteration。任何这类的对象在Python中都可以用for循环或其他遍历工具迭代,迭代工具内部会在每次迭代时调用next方法,并且捕捉StopIteration异常来确定何时离开。

  使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。

  比如要逐行读取一个文件的内容,利用readlines()方法,我们可以这么写:

  for line in open("test.txt").readlines():
    print line

  这样虽然可以工作,但不是最好的方法。因为他实际上是把文件一次加载到内存中,然后逐行打印。当文件很大时,这个方法的内存开销就很大了。
  利用file的迭代器,我们可以这样写:

  for line in open("test.txt"):   #use file iterators
    print line

这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行。

生成器(constructor)

  生成器函数在Python中与迭代器协议的概念联系在一起。简而言之,包含yield语句的函数会被特地编译成生成器。当函数被调用时,他们返回一个生成器对象,这个对象支持迭代器接口。函数也许会有个return语句,但它的作用是用来yield产生值的。
  不像一般的函数会生成值后退出,生成器函数在生成值后会自动挂起并暂停他们的执行和状态,他的本地变量将保存状态信息,这些信息在函数恢复时将再度有效。

>>> def g(n):
...     for i in range(n):
...             yield i **2
...
>>> for i in g(5):
...     print i,":",
...
0 : 1 : 4 : 9 : 16 :

要了解他的运行原理,可用next方法看看。

  yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一条yield语句再返回一个新的值。
  使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
例子:

>>> def test_yield():
...     yield 1
...     yield 2
...     yield (1,2)
...
>>> a = test_yield()
>>> a.next()
1
>>> a.next()
2
>>> a.next()
(1, 2)
>>> a.next()
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
StopIteration

在运行完全部next之后,生成器抛出了一个StopIteration异常,迭代终止。

yield基本用法

典型的例子:

  斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。1 2 3 5 8……

def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        yield b 
        # print b 
        a, b = b, a + b 
        n = n + 1 

  yield 的作用就是把一个函数变成一个generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个生成器,如调用fab函数, 不会执行该函数,而是返回一个iterable迭代对象!

  在for循环执行时,每次循环都会相当于执行生成器的next函数,才开始执行fab函数的内部代码,执行到yield b时,fab函数就返回一个迭代值,然后挂起。

  下次迭代时,代码从yield b的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到yield。
更多的yield例子:

#!/usr/bin/python
def a():
    print ("do a() will not print out")
    yield 5
a()
print ("===============test a()")

def b():
    print ("list generator will in def , print here...")
    yield 5
g_obj = b()
print ("===============g_obj test b: %s" % g_obj)
print ("just generator obj, not in b def")
print ("list_g: %s" % list(g_obj))

def c():
    print ("next() will here... test generator next(), next attrbute not in python3, python2.6 is exist")
    yield 5
    print ("test generator next2")
g_obj = c()
print ("===============g_obj test c: %s" % g_obj)
#g_obj.next()
#print ("dir g_obj: %s " % dir(g_obj))


def d():
    global m
    global n
    print ("send() will here... test generator send()")
    m = yield 5
    print ("send input is m : %s" % m)
    n = yield 6
    print ("test generator send2")

g_obj = d()
print ("===============g_obj test d: %s" % g_obj)
s_return1 = g_obj.send(None)
s_return2 = g_obj.send("send twice")
print ("the next send input will be the result of last yield, just like m is : %s, s_return1 is : %s, s_return2 is : %s" % (m, s_return1, s_return2))
print ("not next send so n is undefind, n is : %s" % n)

运行结果:

===============test a()
===============g_obj test b: <generator object b at 0x7f740b7fc750>
just generator obj, not in b def
list generator will in def , print here...
list_g: [5]
===============g_obj test c: <generator object c at 0x7f740b7fc7e0>
===============g_obj test d: <generator object d at 0x7f740b7fc750>
send() will here... test generator send()
send input is m : send twice
the next send input will be the result of last yield, just like m is : send twice, s_return1 is : 5, s_return2 is : 6
Traceback (most recent call last):
  File "./yield0.py", line 40, in <module>
    print ("not next send so n is undefind, n is : %s" % n)
NameError: name 'n' is not defined

send用法说明:

关于输入:send的输入是本次遇到yield时,先赋值给yield表达式的结果。有点难懂,详细说明。

  1. 如m = yield 5,这个表达式,是分两次yield完成的,第一次执行后一半,即返回5,下次send时,才执行前一半,即把后一次send的输入赋值给m。

  2. 所以,第一次使用send,输入必须是None,开启生成器,因为本次遇到yield后,yield返回后,就完结了,并没有一个执行到赋值给m的过程。m的初值是第二个send()输入参数。

  3. 最后一个最后一个send,把输入给了上一次yield表达式,所以最后一个n=yield 6,语句执行后,n是未定义的。

关于输出:比较简单,就是yield的结果。如s_return = send(None),由于yield 5,所以s_return= 5

send(msg) 与 next()

  了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不能传递特定的值,只能传递None进去。因此,我们可以看做c.next() 和 c.send(None) 作用是一样的。来看这个例子:

def h():  
print 'Wen Chuan',  
m = yield 5 # Fighting!  
print m  
d = yield 12  
print 'We are together!'  
c = h()  
c.next() #相当于c.send(None)  
c.send('Fighting!') #(yield 5)表达式被赋予了'Fighting!'

输出的结果为:  
Wen Chuan Fighting! 

  需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有Python yield语句来接收这个值。

send(msg) 与 next()的返回值

def h():  
print 'Wen Chuan',  
m = yield 5 # Fighting!  
print m  
d = yield 12  
print 'We are together!'  
c = h()  
m = c.next() #m 获取了yield 5 的参数值 5  
d = c.send('Fighting!') #d 获取了yield 12 的参数值12  
print 'We will never forget the date', m, '.', d

输出结果:  
Wen Chuan Fighting!  
We will never forget the date 5 . 12 

throw() 与 close()中断 Generator

中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:

def close(self):  
try:  
self.throw(GeneratorExit)  
except (GeneratorExit, StopIteration):  
pass  
else:  
raise RuntimeError("generator ignored GeneratorExit")  
# Other exceptions are not caught 

因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:

Traceback (most recent call last):  
File "/home/evergreen/Codes/yidld.py", line 14, in <module> 
d = c.send('Fighting!') #d 获取了yield 12 的参数值12  
StopIteration 

使用yield实现协程

举例:生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产。

#!/usr/bin/python

def consumer():
    r = ''
    while True:
        n = yield r
        if not n:
            print("not n...")
            return
        print('[CONSUMER] Consuming %s...' % n)
        r = '200 OK'

def produce(c):
    f = c.send(None)
    print('[PRODUCER] Consumer first return: %s' % f)
    n = 0
    while n < 2:
        n = n + 1
        print('[PRODUCER] Producing %s...' % n)
        r = c.send(n)
        print('[PRODUCER] Consumer return: %s' % r)
    c.close()

c = consumer()
produce(c)

运行结果:

[PRODUCER] Consumer first return: 
[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK

协程的说明:

注意到consumer函数是一个generator,把一个consumer传入produce后:

  1. 首先调用c.send(None)启动生成器;
  2. 然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
  3. consumer通过yield拿到消息,处理,又通过yield把结果传回;
  4. produce拿到consumer处理的结果,继续生产下一条消息;
    5 .produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。

yield from基本用法

从python3.3新增语法yield from,在python3.4中asyncio的微线程的实现依赖此语法。

先从generator中套generator的需求入手。

举例:生成器调用子生成器,父生成器输入什么,调用完子生成器后,同样返回什么。

def i_yield_whatever_input_is():
    input = 0
    while True:
        print("1: before gi yield input=%s" % input)
        input = yield input
        print("2: after gi yield input=%s" % input)

def wrap_generator1():
    for i in i_yield_whatever_input_is():
        print("3: before g1 yield i=%s" % i)
        yield i

g = wrap_generator1()
print("4: after send None return: %s" % g.send(None))
print("4: after send 1 return: %s" % g.send(1))
print("4: after send 2 return: %s" % g.send(2))

未到达预期的运行结果:

1: before gi yield input=0
3: before g1 yield i=0
4: after send None return: 0
2: after gi yield input=None
1: before gi yield input=None
3: before g1 yield i=None
4: after send 1 return: None
2: after gi yield input=None
1: before gi yield input=None
3: before g1 yield i=None
4: after send 2 return: None

显然不是预期“输入什么,返回什么”。由于send的输入到wrap_generator后,无法输入给子生成器,因此,子生成器i_yield_whatever_input_is的输入是None,只能yield None。

  使用yield from,可以将send的输入,传递给子生成器,父生成器代码修改如下:

def wrap_generator2():
    yield from i_yield_whatever_input_is()

g = wrap_generator2()
print("4: after send None return: %s" % g.send(None))
print("4: after send 1 return: %s" % g.send(1))
print("4: after send 2 return: %s" % g.send(2))

达到预期的运行结果:

1: before gi yield input=0
4: after send None return: 0
2: after gi yield input=1
1: before gi yield input=1
4: after send 1 return: 1
2: after gi yield input=2
1: before gi yield input=2
4: after send 2 return: 2

使用yield from实现asyncio

简单的例子(两个函数并发执行,函数内部的sleep不互相阻塞其它函数):

#!/usr/bin/python
import asyncio
import threading

@asyncio.coroutine
def hello():
    print("2.1 befor yield from asyncio sleep")
    r = yield from asyncio.sleep(2)
    print("2.1 after yield from asyncio sleep")

def hello2():
    print("2.2 befor yield from asyncio sleep")
    r = yield from asyncio.sleep(5)
    print("2.2 after yield from asyncio sleep")

loop = asyncio.get_event_loop()
print ("1. after get event loop")

#loop.run_until_complete(hello())

tasks = [hello2(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
print ("2. after run")

loop.close()
print ("3. after close")

运行结果:

1. after get event loop
2.2 befor yield from asyncio sleep
2.1 befor yield from asyncio sleep
===等待两个函数sleep返回===
2.1 after yield from asyncio sleep
2.2 after yield from asyncio sleep
2. after run
3. after close

复杂的例子(并发同时访问多个WEB服务器):

#!/usr/bin/python
import asyncio

@asyncio.coroutine
def wget(host):
    print("wget %s..." % host)
    connect = asyncio.open_connection(host, 80)
    reader, writer = yield from connect
    header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
    writer.write(header.encode('utf-8')) #向服务器发送请求
    yield from writer.drain()
    while True:
        line = yield from reader.readline() #读取服务器返回的数据
        if line == b'\r\n':
            break
        print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
    writer.close()

loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.baidu.com', 'www.sina.com''www.taobao.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()

运行结果:并发访问,服务器一旦返回,立即打印到屏幕。

wget www.baidu.com...
wget www.taobao.com...
wget www.sina.com...
www.baidu.com header > HTTP/1.1 200 OK
www.baidu.com header > Date: Fri, 12 Jun 2015 03:17:20 GMT
www.baidu.com header > Content-Type: text/html
www.baidu.com header > Content-Length: 14613
www.baidu.com header > Last-Modified: Wed, 03 Sep 2014 02:48:32 GMT
www.baidu.com header > Connection: Close
www.baidu.com header > Vary: Accept-Encoding
www.baidu.com header > Set-Cookie: BAIDUID=052DF57419E7322485FE496F7CFD60DF:FG=1; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: BIDUPSID=052DF57419E7322485FE496F7CFD60DF; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: PSTM=1434079040; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: BDSVRTM=0; path=/
www.baidu.com header > P3P: CP=" OTI DSP COR IVA OUR IND COM "
www.baidu.com header > Server: BWS/1.1
www.baidu.com header > X-UA-Compatible: IE=Edge,chrome=1
www.baidu.com header > Pragma: no-cache
www.baidu.com header > Cache-control: no-cache
www.baidu.com header > BDPAGETYPE: 1
www.baidu.com header > BDQID: 0x82714a2100005cd6
www.baidu.com header > BDUSERID: 0
www.baidu.com header > Accept-Ranges: bytes
www.sina.com header > HTTP/1.1 301 Moved Permanently
www.sina.com header > Server: nginx
www.sina.com header > Date: Fri, 12 Jun 2015 03:15:36 GMT
www.sina.com header > Content-Type: text/html
www.sina.com header > Location: http://www.sina.com.cn/
www.sina.com header > Expires: Fri, 12 Jun 2015 03:17:36 GMT
www.sina.com header > Cache-Control: max-age=120
www.sina.com header > Age: 104
www.sina.com header > Content-Length: 178
www.sina.com header > X-Cache: HIT from ja180-186.sina.com.cn
www.sina.com header > Connection: close
www.taobao.com header > HTTP/1.1 200 OK
www.taobao.com header > Server: Tengine
www.taobao.com header > Date: Fri, 12 Jun 2015 03:17:20 GMT
www.taobao.com header > Content-Type: text/html; charset=gbk
www.taobao.com header > Connection: close
www.taobao.com header > Vary: Accept-Encoding
www.taobao.com header > Set-Cookie: CAT=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT; Max-Age=0
www.taobao.com header > Set-Cookie: thw=cn; Path=/; Domain=.taobao.com; Expires=Sat, 11-Jun-16 03:17:20 GMT;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值