参考:http://blog.163.com/l_greatsea/blog/static/2049860442013220113640476/
http://www.cnblogs.com/fangyuan1004/p/4571304.html
http://www.cnblogs.com/tqsummer/archive/2010/12/27/1917927.html
http://blog.csdn.net/alvine008/article/details/43410079
迭代器
在Python中,for循环可以用于Python中的任何类型,包括列表、元祖等等,实际上,for循环可用于任何“可迭代对象”,这其实就是迭代器。
迭代器是一个实现了迭代器协议的对象,Python中的迭代器协议就是有next方法的对象会前进到下一结果,而在一系列结果的末尾是,则会引发StopIteration。任何这类的对象在Python中都可以用for循环或其他遍历工具迭代,迭代工具内部会在每次迭代时调用next方法,并且捕捉StopIteration异常来确定何时离开。
使用迭代器一个显而易见的好处就是:每次只从对象中读取一条数据,不会造成内存的过大开销。
比如要逐行读取一个文件的内容,利用readlines()方法,我们可以这么写:
for line in open("test.txt").readlines():
print line
这样虽然可以工作,但不是最好的方法。因为他实际上是把文件一次加载到内存中,然后逐行打印。当文件很大时,这个方法的内存开销就很大了。
利用file的迭代器,我们可以这样写:
for line in open("test.txt"): #use file iterators
print line
这是最简单也是运行速度最快的写法,他并没显式的读取文件,而是利用迭代器每次读取下一行。
生成器(constructor)
生成器函数在Python中与迭代器协议的概念联系在一起。简而言之,包含yield语句的函数会被特地编译成生成器。当函数被调用时,他们返回一个生成器对象,这个对象支持迭代器接口。函数也许会有个return语句,但它的作用是用来yield产生值的。
不像一般的函数会生成值后退出,生成器函数在生成值后会自动挂起并暂停他们的执行和状态,他的本地变量将保存状态信息,这些信息在函数恢复时将再度有效。
>>> def g(n):
... for i in range(n):
... yield i **2
...
>>> for i in g(5):
... print i,":",
...
0 : 1 : 4 : 9 : 16 :
要了解他的运行原理,可用next方法看看。
yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行。也就是说,yield返回函数,交给调用者一个返回值,然后再“瞬移”回去,让函数继续运行, 直到吓一条yield语句再返回一个新的值。
使用yield返回后,调用者实际得到的是一个迭代器对象,迭代器的值就是返回值,而调用该迭代器的next()方法会导致该函数恢复yield语句的执行环境继续往下跑,直到遇到下一个yield为止,如果遇不到yield,就会抛出异常表示迭代结束。
例子:
>>> def test_yield():
... yield 1
... yield 2
... yield (1,2)
...
>>> a = test_yield()
>>> a.next()
1
>>> a.next()
2
>>> a.next()
(1, 2)
>>> a.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
StopIteration
在运行完全部next之后,生成器抛出了一个StopIteration异常,迭代终止。
yield基本用法
典型的例子:
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。1 2 3 5 8……
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
# print b
a, b = b, a + b
n = n + 1
yield 的作用就是把一个函数变成一个generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个生成器,如调用fab函数, 不会执行该函数,而是返回一个iterable迭代对象!
在for循环执行时,每次循环都会相当于执行生成器的next函数,才开始执行fab函数的内部代码,执行到yield b时,fab函数就返回一个迭代值,然后挂起。
下次迭代时,代码从yield b的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到yield。
更多的yield例子:
#!/usr/bin/python
def a():
print ("do a() will not print out")
yield 5
a()
print ("===============test a()")
def b():
print ("list generator will in def , print here...")
yield 5
g_obj = b()
print ("===============g_obj test b: %s" % g_obj)
print ("just generator obj, not in b def")
print ("list_g: %s" % list(g_obj))
def c():
print ("next() will here... test generator next(), next attrbute not in python3, python2.6 is exist")
yield 5
print ("test generator next2")
g_obj = c()
print ("===============g_obj test c: %s" % g_obj)
#g_obj.next()
#print ("dir g_obj: %s " % dir(g_obj))
def d():
global m
global n
print ("send() will here... test generator send()")
m = yield 5
print ("send input is m : %s" % m)
n = yield 6
print ("test generator send2")
g_obj = d()
print ("===============g_obj test d: %s" % g_obj)
s_return1 = g_obj.send(None)
s_return2 = g_obj.send("send twice")
print ("the next send input will be the result of last yield, just like m is : %s, s_return1 is : %s, s_return2 is : %s" % (m, s_return1, s_return2))
print ("not next send so n is undefind, n is : %s" % n)
运行结果:
===============test a()
===============g_obj test b: <generator object b at 0x7f740b7fc750>
just generator obj, not in b def
list generator will in def , print here...
list_g: [5]
===============g_obj test c: <generator object c at 0x7f740b7fc7e0>
===============g_obj test d: <generator object d at 0x7f740b7fc750>
send() will here... test generator send()
send input is m : send twice
the next send input will be the result of last yield, just like m is : send twice, s_return1 is : 5, s_return2 is : 6
Traceback (most recent call last):
File "./yield0.py", line 40, in <module>
print ("not next send so n is undefind, n is : %s" % n)
NameError: name 'n' is not defined
send用法说明:
关于输入:send的输入是本次遇到yield时,先赋值给yield表达式的结果。有点难懂,详细说明。
如m = yield 5,这个表达式,是分两次yield完成的,第一次执行后一半,即返回5,下次send时,才执行前一半,即把后一次send的输入赋值给m。
所以,第一次使用send,输入必须是None,开启生成器,因为本次遇到yield后,yield返回后,就完结了,并没有一个执行到赋值给m的过程。m的初值是第二个send()输入参数。
最后一个最后一个send,把输入给了上一次yield表达式,所以最后一个n=yield 6,语句执行后,n是未定义的。
关于输出:比较简单,就是yield的结果。如s_return = send(None),由于yield 5,所以s_return= 5
send(msg) 与 next()
了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不能传递特定的值,只能传递None进去。因此,我们可以看做c.next() 和 c.send(None) 作用是一样的。来看这个例子:
def h():
print 'Wen Chuan',
m = yield 5 # Fighting!
print m
d = yield 12
print 'We are together!'
c = h()
c.next() #相当于c.send(None)
c.send('Fighting!') #(yield 5)表达式被赋予了'Fighting!'
输出的结果为:
Wen Chuan Fighting!
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有Python yield语句来接收这个值。
send(msg) 与 next()的返回值
def h():
print 'Wen Chuan',
m = yield 5 # Fighting!
print m
d = yield 12
print 'We are together!'
c = h()
m = c.next() #m 获取了yield 5 的参数值 5
d = c.send('Fighting!') #d 获取了yield 12 的参数值12
print 'We will never forget the date', m, '.', d
输出结果:
Wen Chuan Fighting!
We will never forget the date 5 . 12
throw() 与 close()中断 Generator
中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:
def close(self):
try:
self.throw(GeneratorExit)
except (GeneratorExit, StopIteration):
pass
else:
raise RuntimeError("generator ignored GeneratorExit")
# Other exceptions are not caught
因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:
Traceback (most recent call last):
File "/home/evergreen/Codes/yidld.py", line 14, in <module>
d = c.send('Fighting!') #d 获取了yield 12 的参数值12
StopIteration
使用yield实现协程
举例:生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产。
#!/usr/bin/python
def consumer():
r = ''
while True:
n = yield r
if not n:
print("not n...")
return
print('[CONSUMER] Consuming %s...' % n)
r = '200 OK'
def produce(c):
f = c.send(None)
print('[PRODUCER] Consumer first return: %s' % f)
n = 0
while n < 2:
n = n + 1
print('[PRODUCER] Producing %s...' % n)
r = c.send(n)
print('[PRODUCER] Consumer return: %s' % r)
c.close()
c = consumer()
produce(c)
运行结果:
[PRODUCER] Consumer first return:
[PRODUCER] Producing 1...
[CONSUMER] Consuming 1...
[PRODUCER] Consumer return: 200 OK
[PRODUCER] Producing 2...
[CONSUMER] Consuming 2...
[PRODUCER] Consumer return: 200 OK
协程的说明:
注意到consumer函数是一个generator,把一个consumer传入produce后:
- 首先调用c.send(None)启动生成器;
- 然后,一旦生产了东西,通过c.send(n)切换到consumer执行;
- consumer通过yield拿到消息,处理,又通过yield把结果传回;
- produce拿到consumer处理的结果,继续生产下一条消息;
5 .produce决定不生产了,通过c.close()关闭consumer,整个过程结束。
整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。
yield from基本用法
从python3.3新增语法yield from,在python3.4中asyncio的微线程的实现依赖此语法。
先从generator中套generator的需求入手。
举例:生成器调用子生成器,父生成器输入什么,调用完子生成器后,同样返回什么。
def i_yield_whatever_input_is():
input = 0
while True:
print("1: before gi yield input=%s" % input)
input = yield input
print("2: after gi yield input=%s" % input)
def wrap_generator1():
for i in i_yield_whatever_input_is():
print("3: before g1 yield i=%s" % i)
yield i
g = wrap_generator1()
print("4: after send None return: %s" % g.send(None))
print("4: after send 1 return: %s" % g.send(1))
print("4: after send 2 return: %s" % g.send(2))
未到达预期的运行结果:
1: before gi yield input=0
3: before g1 yield i=0
4: after send None return: 0
2: after gi yield input=None
1: before gi yield input=None
3: before g1 yield i=None
4: after send 1 return: None
2: after gi yield input=None
1: before gi yield input=None
3: before g1 yield i=None
4: after send 2 return: None
显然不是预期“输入什么,返回什么”。由于send的输入到wrap_generator后,无法输入给子生成器,因此,子生成器i_yield_whatever_input_is的输入是None,只能yield None。
使用yield from,可以将send的输入,传递给子生成器,父生成器代码修改如下:
def wrap_generator2():
yield from i_yield_whatever_input_is()
g = wrap_generator2()
print("4: after send None return: %s" % g.send(None))
print("4: after send 1 return: %s" % g.send(1))
print("4: after send 2 return: %s" % g.send(2))
达到预期的运行结果:
1: before gi yield input=0
4: after send None return: 0
2: after gi yield input=1
1: before gi yield input=1
4: after send 1 return: 1
2: after gi yield input=2
1: before gi yield input=2
4: after send 2 return: 2
使用yield from实现asyncio
简单的例子(两个函数并发执行,函数内部的sleep不互相阻塞其它函数):
#!/usr/bin/python
import asyncio
import threading
@asyncio.coroutine
def hello():
print("2.1 befor yield from asyncio sleep")
r = yield from asyncio.sleep(2)
print("2.1 after yield from asyncio sleep")
def hello2():
print("2.2 befor yield from asyncio sleep")
r = yield from asyncio.sleep(5)
print("2.2 after yield from asyncio sleep")
loop = asyncio.get_event_loop()
print ("1. after get event loop")
#loop.run_until_complete(hello())
tasks = [hello2(), hello()]
loop.run_until_complete(asyncio.wait(tasks))
print ("2. after run")
loop.close()
print ("3. after close")
运行结果:
1. after get event loop
2.2 befor yield from asyncio sleep
2.1 befor yield from asyncio sleep
===等待两个函数sleep返回===
2.1 after yield from asyncio sleep
2.2 after yield from asyncio sleep
2. after run
3. after close
复杂的例子(并发同时访问多个WEB服务器):
#!/usr/bin/python
import asyncio
@asyncio.coroutine
def wget(host):
print("wget %s..." % host)
connect = asyncio.open_connection(host, 80)
reader, writer = yield from connect
header = 'GET / HTTP/1.0\r\nHost: %s\r\n\r\n' % host
writer.write(header.encode('utf-8')) #向服务器发送请求
yield from writer.drain()
while True:
line = yield from reader.readline() #读取服务器返回的数据
if line == b'\r\n':
break
print('%s header > %s' % (host, line.decode('utf-8').rstrip()))
writer.close()
loop = asyncio.get_event_loop()
tasks = [wget(host) for host in ['www.baidu.com', 'www.sina.com','www.taobao.com']]
loop.run_until_complete(asyncio.wait(tasks))
loop.close()
运行结果:并发访问,服务器一旦返回,立即打印到屏幕。
wget www.baidu.com...
wget www.taobao.com...
wget www.sina.com...
www.baidu.com header > HTTP/1.1 200 OK
www.baidu.com header > Date: Fri, 12 Jun 2015 03:17:20 GMT
www.baidu.com header > Content-Type: text/html
www.baidu.com header > Content-Length: 14613
www.baidu.com header > Last-Modified: Wed, 03 Sep 2014 02:48:32 GMT
www.baidu.com header > Connection: Close
www.baidu.com header > Vary: Accept-Encoding
www.baidu.com header > Set-Cookie: BAIDUID=052DF57419E7322485FE496F7CFD60DF:FG=1; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: BIDUPSID=052DF57419E7322485FE496F7CFD60DF; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: PSTM=1434079040; expires=Thu, 31-Dec-37 23:55:55 GMT; max-age=2147483647; path=/; domain=.baidu.com
www.baidu.com header > Set-Cookie: BDSVRTM=0; path=/
www.baidu.com header > P3P: CP=" OTI DSP COR IVA OUR IND COM "
www.baidu.com header > Server: BWS/1.1
www.baidu.com header > X-UA-Compatible: IE=Edge,chrome=1
www.baidu.com header > Pragma: no-cache
www.baidu.com header > Cache-control: no-cache
www.baidu.com header > BDPAGETYPE: 1
www.baidu.com header > BDQID: 0x82714a2100005cd6
www.baidu.com header > BDUSERID: 0
www.baidu.com header > Accept-Ranges: bytes
www.sina.com header > HTTP/1.1 301 Moved Permanently
www.sina.com header > Server: nginx
www.sina.com header > Date: Fri, 12 Jun 2015 03:15:36 GMT
www.sina.com header > Content-Type: text/html
www.sina.com header > Location: http://www.sina.com.cn/
www.sina.com header > Expires: Fri, 12 Jun 2015 03:17:36 GMT
www.sina.com header > Cache-Control: max-age=120
www.sina.com header > Age: 104
www.sina.com header > Content-Length: 178
www.sina.com header > X-Cache: HIT from ja180-186.sina.com.cn
www.sina.com header > Connection: close
www.taobao.com header > HTTP/1.1 200 OK
www.taobao.com header > Server: Tengine
www.taobao.com header > Date: Fri, 12 Jun 2015 03:17:20 GMT
www.taobao.com header > Content-Type: text/html; charset=gbk
www.taobao.com header > Connection: close
www.taobao.com header > Vary: Accept-Encoding
www.taobao.com header > Set-Cookie: CAT=deleted; expires=Thu, 01-Jan-1970 00:00:01 GMT; Max-Age=0
www.taobao.com header > Set-Cookie: thw=cn; Path=/; Domain=.taobao.com; Expires=Sat, 11-Jun-16 03:17:20 GMT;