给出一棵中序遍历为1,2,3,4,5,6. . . . .的满二叉树。
然后从编号为 a 的节点发一封信到 编号为 b 的节点。每次只能从 i 传到 (i-1) 或者 (i+1),花费等于路上的点的个数(端点除外)。
问从a 到 b发一封信的最小花费是多少。
尼玛,读题读了一万年,活该CET不过。
dp[ i ] 表示 从 1 到 (i <<1)-1节点的最小花费。
即 dp[ i ] = dp[i-1]*2 + (i-2)*2;
dp[1] = dp[2] = 0;
设MC(a,b)为 a 到 b 的最小花费,则有
MC(a,b) == MC(b,a) && MC(x,z) == MC(x,y) + MC(y,z) (x < y < z)。
所以问题转化为
MC(a,b) = MC(1,b) - MC(1,a) (b > a)。
MC(1,x)的计算方法:
1,若x <= 1,则MC(1,x) == 0,结束;否则进行下面的步骤。
2,首先找到满足( 1<<k )-1 < x 的 k 的最大值。
3,减掉与x所在子树平行的最大的左子树及根节点,即将 x 平移到左子树中对应的位置,即 x = x(1<<k);
ans += dp[ k ] .
4,若x == 0,ans += (k-1) ,结束;否则 ans += (k-1)*2,继续第一步;
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <stack>
#pragma comment(linker, "/STACK:1024000000");
#define LL long long int
#define ULL unsigned long long int
#define _LL __int64
#define INF 0x3f3f3f3f
#define Mod 1000000009
using namespace std;
_LL dp[32];
int main()
{
int i;
_LL a,b;
dp[1] = 0;
dp[2] = 0;
for(i = 3;i <= 32; ++i)
{
dp[i] = dp[i-1]*2 + (i-2)*2;
}
scanf("%I64d %I64d",&a,&b);
if(a > b)
swap(a,b);
_LL temp = 0,ans = 0;
while(a > 1)
{
for(i = 0;(1<<i)-1 < a; ++i)
;
--i;
a = a - (1<<i);
if(a == 0)
{
ans += dp[i]+(i-1);
break;
}
ans += (dp[i]+(i-1)*2);
}
temp = ans;
ans = 0;
while(b > 1)
{
for(i = 0;(1<<i)-1 < b; ++i)
;
--i;
b = b - (1<<i);
if(b == 0)
{
ans += dp[i]+(i-1);
break;
}
ans += (dp[i]+(i-1)*2);
}
printf("%I64d\n",ans-temp);
return 0;
}