竟然做过原题,一眼看上去竟然没感觉。。。
哈夫曼树定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。
1、路径和路径长度
在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。
2、结点的权及带权路径长度
若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。
3、树的带权路径长度
树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。
以上摘自百度百科。
优先队列的实现。
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#pragma comment(linker, "/STACK:1024000000");
#define EPS (1e-8)
#define LL long long
#define ULL unsigned long long LL
#define _LL __LL64
#define _INF 0x3f3f3f3f
#define Mod 1000000007
#define LM(a,b) (((ULL)(a))<<(b))
#define RM(a,b) (((ULL)(a))>>(b))
using namespace std;
struct N
{
LL ans;
bool operator < (const N &a) const{
return a.ans < ans;
}
};
priority_queue<N> q;
int main()
{
int n;
N f,t;
while(q.empty() == false)
q.pop();
while(scanf("%d",&n) != EOF)
{
LL sum = 0;
while(n--)
{
scanf("%lld",&f.ans);
q.push(f);
}
while(q.empty() == false)
{
f = q.top();
q.pop();
if(q.empty() == false)
{
t = q.top();
q.pop();
f.ans += t.ans;
sum += f.ans;
q.push(f);
}
}
printf("%lld\n",sum);
}
return 0;
}