RESTFUL 接口里,经常需要检查 json 参数,几次老记不住,就查了下,写下以后备用。
以下是python jsonschema 的一个例子,包含了绝大多数常用检测,注释看完就明白了。
from jsonschema import validate, draft7_format_checker
from jsonschema.exceptions import SchemaError, ValidationError
schema = {
# 该关键字用于指定JSON Schema版本: draft-07
"$schema": "http://json-schema.org/draft-07/schema#",
# 描述对应的JSON元素,title相对来说,更加简洁
"title": "book info",
# 描述对应的JSON元素,description更加倾向于详细描述相关信息
"description": "some information about book",
# 该关键字用于限定待校验JSON元素所属的数据类型,取值可为:object,array,integer,number,string,boolean,null
"type": "object",
# 用于指定JSON对象中的各种不同key应该满足的校验逻辑,
# 如果待校验JSON对象中所有值都能够通过该关键字值中定义的对应key的校验逻辑,每个key对应的值,都是一个JSON Schema,则待校验JSON对象通过校验。
"properties": {
"id": {
"description": "The unique identifier for a book",
"type": "integer",
"minimum": 1
},
"name": {
"description": "book name",
"type": "string",
"minLength": 3,
"maxLength": 30
},
"info": {
"description": "simple information about book",
"type": "string",
"minLength": 10,
"maxLength": 60
},
"tips": {
"anyOf": [ # 满足其中一个类型 就行
{"type": "string", "minLength": 10, "maxLength": 60},
{"type": "number", "minimum": 5.0}
]
},
"price": {
"description": "book price",
"type": "number",
# 能被0.5整除
"multipleOf": 0.5,
# 这里取等,5.0=<price<=99999.0
"minimum": 5.0,
"maximum": 99999.0,
# 若使用下面这两个关键字则 5.0<price<99999.0
# "exclusiveMinimum": 5.0,
# "exclusiveMaximum": 99999.0
},
"tags": {
"type": "array",
"items": [
{
"type": "string",
"minLength": 2,
"maxLength": 8
},
{
"type": "number",
"minimum": 1.0
}
],
# 待校验JSON数组第一个元素是string类型,且可接受的最短长度为5个字符,第二个元素是number类型,且可接受的最小值为10
# 剩余的其他元素是string类型,且可接受的最短长度为2。
"additonalItems": {
"type": "string",
"miniLength": 2
},
# 至少一个
"miniItems": 1,
# 最多5个
"maxItems": 5,
# 值为true时,所有元素都具有唯一性时,才能通过校验。
"uniqueItems": True
},
"date": {
"description": "书籍出版日期",
"type": "string",
# 可以是以下取值:date、date-time(时间格式)、email(邮件格式)、hostname(网站地址格式)、ipv4、ipv6、uri等。
# 使用format关键字时,在实例化validator时必须给它传format_checker参数,值如:draft7_format_checker, 网址:
# https://python-jsonschema.readthedocs.io/en/latest/validate/#jsonschema.Draft7Validator
"format": "date",
},
"bookcoding": {
"description": "书籍编码",
"type": "string",
# 符合该关键字指定的正则表达式,才算通过校验。
"pattern": "^[A-Z]+[a-zA-Z0-9]{12}$"
},
"other": {
"description": "其他信息",
"type": "object",
"properties": {
"info1": {
"type": "string"
},
"info2": {
"type": "string"
}
}
}
},
# 指定了待校验JSON对象可以接受的最少 一级key 的个数
"minProperties": 3,
# 指定了待校验JSON对象可以接受的最多 一级key 的个数。
"maxProperties": 7,
# patternProperties对象的每一个一级key都是一个正则表达式,value都是一个JSON Schema。
# 只有待校验JSON对象中的一级key,通过与之匹配的patternProperties中的一级正则表达式,对应的JSON Schema的校验,才算通过校验。
# 下面的JSON Schema表示, 所有以a开头的一级key的value都必须是number,
"patternProperties": {
"^a": {
"type": "number"
},
},
# 如果待校验JSON对象中存在,既没有在properties中被定义,又没有在patternProperties中被定义,那么这些一级key必须通过additionalProperties的校验。
"additionalProperties": {
"desc": {
"type": "string",
"minLength": 1
},
},
# 该关键字限制了JSON对象中必须包含哪些一级key。
# 如果一个JSON对象中含有required关键字所指定的所有一级key,则该JSON对象能够通过校验。
"required": ["id", "name", "info", "price"]
}
json_data = {
"id": 1,
"name": "jarvis手册",
"info": "贾维斯平台使用手册1",
"price": 5.5,
"tags": ["jar"],
"date": "2019-5-25",
"other": {
"info1": "1111",
"info2": "222"
}
}
try:
validate(instance=json_data, schema=schema, format_checker=draft7_format_checker)
except SchemaError as e:
print("验证模式schema出错:\n出错位置:{}\n提示信息:{}".format(" --> ".join([i for i in e.path]), e.message))
except ValidationError as e:
print("json数据不符合schema规定:\n出错字段:{}\n提示信息:{}".format(" --> ".join([i for i in e.path]), e.message))
else:
print("验证成功!")