第五周项目2-分数类的雏形

/*
*程序的版权和版本声明部分:
*Copyright(c)2014,烟台大学计算机学院学生
*All rights reserved.
*文件名称:
*作者:田成琳
*完成日期:2014  年 3月 24 日
*版本号:v1.0
*对任务及求解方法的描述部分:
*输入描述:分数
*问题描述:玩分数
*程序输出:如题
*问题分析:
*算法设计:
*/
#include<iostream>
#include<cstdlib>
using namespace std;
class CFraction
{
private:
    int nume;  // 分子
    int deno;  // 分母
public:
    CFraction(int nu=0,int de=1):nume(nu),deno(de){}   //构造函数,初始化用
    void set(int nu=0,int de=1);    //置值,改变值时用
    void input();	 //按照"nu/de"的格式,如"5/2"的形式输入
    void simplify();	 //化简(使分子分母没有公因子)
    void amplify(int n);	 //放大n倍,如2/3放大5倍为10/3
    void output(int style=0);	//输出:以8/6为例,style为0时,原样输出8/6;
	//style为1时,输出化简后形式4/3;
	//style为2时,输出1(1/3)形式,表示一又三分之一;
	//style为3时,用小数形式输出,如1.3333;
	//默认方式0
};
void CFraction::set(int nu,int de)
{
	nume=nu;
	deno=de;
}
void CFraction::input()
{
	int nu,de;
	char a;
	cin>>nu>>a>>de;
	set(nu,de);
}
void CFraction::simplify()
{
	int i,t;
	if(nume>deno)
		t=nume;
	else
		t=deno;
	for(i=2;i<=t;i++)
	{
		while(nume%i==0&&deno%i==0)
		{
			nume/=i;
			deno/=i;
		}
	}
}
void CFraction::amplify(int n)
{
	nume*=n;
}
void CFraction::output(int style)
{
	int n;
	if(style==0)
		cout<<nume<<"/"<<deno<<endl;
	else if(style==1)
	{
		n=nume/deno;
		nume=nume-n*deno;
		cout<<n<<"("<<nume<<"/"<<deno<<")"<<endl;
	}
	else
		cout<<double(nume)/double(deno)<<endl;
}
int main()
{
	CFraction cf;
	int n,num;
	cout<<"请按照"<<"nu/de"<<"的格式,如"<<"5/2"<<"的形式输入:"<<endl;
	cf.input();
	while(true)
	{
		cout<<"请输入您的选择:"<<endl;
		cout<<"1.原样输出.        2.化简后输出."<<endl;
		cout<<"3.扩大N倍后输出.   4.以假分数形式输出"<<endl;
		cout<<"5.以小数形式输出   0.退出."<<endl;
		cin>>n;
		switch(n)
		{
		case 0:
			exit(0);
		case 1:
			cf.output();
			break;
		case 2:
			cf.simplify();
			cf.output();
			break;
		case 3:
			cout<<"请输入扩大倍数:"<<endl;
			cin>>num;
			cf.amplify(num);
			cf.output();
			break;
		case 4:
			cf.output(1);
			break;
		case 5:
			cf.output(2);
			break;
		default:
			cout<<"输入有误,请重新输入:"<<endl;
			cin>>n;
		}
	}
	return 0;
}

运行结果:

心得体会:~

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值