Description
有一个有趣的手机游戏,有n*n个正方形的小按钮,有的按钮是黄色,有的按钮是白色。玩家的任务是通过点击按钮,让所有按钮都变成黄色,点按钮的次数越少,得分越高。
但是按钮有个奇怪的特点,当你点击了坐标为(x,y)的按钮后,坐标为(x,y),(x+1,y),(x-1,y),(x,y-1),(x,y+1)的五个按钮会同时改变自身的颜色,是白色的变成黄色,黄色的变成白色。完成游戏最少需要点击多少次按钮呢?请找出答案。
Input
第一行,一个整数n,表示有n*n个按钮。(1<=n<=40)
接下来是一个由小写字母'y'和字符'w'构成的n*n的矩阵,描述了游戏开始时的情景。'y'表示该按钮式黄色,'w'表示该按钮式白色。
Output
如果能够完成游戏,输出一个整数,表示所需最小点击次数。
如果无法完成游戏,输出"inf"
Sample Input
样例输入1:
2
yw
ww
样例输入2:
5
wwwww
wwwww
wwwww
wwwww
wwwww
Sample Output
样例输出1:
1
样例输出2:
15
【分析】
大概大部分的人看到这道题都认为是搜索。但仔细分析后我们知道,宽搜的话,状态无法存储。而深搜的话,状态数过多,会超时。仔细分析后得知,可以用高斯消元法解异或方程组。
我们可以得到这样一个方程组:
v[1][1]*x[1] xor v[1][2]*x[2] xor v[1][3]*x[3] ...... xor v[1][n*n] =b[1]
v[2][1]*x[1] xor v[2][2]*x[2] xor v[2][3]*x[3] ...... xor v[2][n*n] =b[2]
......
v[n*n][1]*x[1] xor v[n*n][2]*x[2] xor v[n*n][3]*x[3] ...... xor v[n*n][n*n] =b[n*n]
其中,v[i][j]为1表示i,j这两个位置可以互相影响,为0表示不能互相影响。x[i]表示解。如果i这个位置需要被改变,b[i]为1,否则,b[i]为0;(我给坐标(x,y)标号为((x-1)*n+y))。
然后直接高斯消元法求出解的个数,即为答案。
现在来分析时间复杂度,原图为n×n,而我们高斯消元的增广矩阵为(n×n)×(n×n),我们记N=n×n。高斯消元的时间复杂度为O(N^3)。那么总的时间复杂度便为O(n*6)。
n的最大值为40,显然是会超时的。但是正确的做法就是这样,这又是为什么呢。
我们关注一下这道题的特点,与i位置关联的点最多只有4个,也就是说,在增广矩阵中,i这一列最多只有5个一(有一个是自己的一)。而高斯消元的主要代价在于,每次消元需要O(N)消去一行,要消O(N)次元。而现在我们只需要消最多4次,每次依然是O(N)。所以,之前的那个时间上界是相当松的。
新的时间复杂度为O(4*N^2),换为n便是O(4*n^4),是稳稳地能过的。
【代码】
/*
ID:Ciocio
LANG:C++
DATE:2013-12-03
TASK:NKOJ-1987
*/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define MAXN 45
#define loc(x,y) ((x-1)*n+y)
int n,N;
int v[MAXN*MAXN][MAXN*MAXN],dir[4][2]={{-1,0},{1,0},{0,1},{0,-1}};
char _read(){char x;for(x=getchar();x!='y'&&x!='w';x=getchar());return x;}
void _init()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
v[loc(i,j)][n*n+1]=(_read()=='y')?0:1;
v[loc(i,j)][loc(i,j)]=1;
}
}
void _Guass()
{
int i,j,k;
for(i=j=1;i<=N&&j<=N;i++,j++)
{
for(k=i;v[k][j]==0&&k<=N;k++);
if(k==N+1){i--;continue;}
if(k!=i)
for(int p=j;p<=N+1;p++)
swap(v[i][p],v[k][p]);
for(k=i+1;k<=N;k++)
if(v[k][j])
for(int p=j;p<=N+1;p++)
v[k][p]^=v[i][p];
}
for(;i<=N;i++)
if(v[i][N+1])
{
printf("inf\n");
return;
}
int ans=0;
for(i=N-1;i;i--)
for(j=i+1;j<=N;j++)
v[i][N+1]^=v[i][j]*v[j][N+1];
for(int i=1;i<=N;i++)
ans+=v[i][N+1];
cout<<ans<<endl;
}
void _solve()
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<=3;k++)
if(1<=i+dir[k][0]&&i+dir[k][0]<=n)
if(1<=j+dir[k][1]&&j+dir[k][1]<=n)
v[loc(i,j)][loc(i+dir[k][0],j+dir[k][1])]=1;
N=n*n;
_Guass();
}
int main()
{
_init();
_solve();
return 0;
}