目录
3 Image Processing I: Scale Space, Pyramid and Gradient Image
3 Image Processing I: Scale Space, Pyramid and Gradient Image
对于许多计算机视觉任务,模糊图像并分别分析这些不同的模糊是有用的。 我们已经在上一节中介绍了模糊图像的概念,但是在这里我们重复产生这种模糊,增加的滤波器尺寸到达所谓的比例空间,如图4所示。这个空间将在随后的部分介绍3.1。 然后我们介绍图像金字塔,第3.2节,粗略地说 - 缩小了尺度空间。

图4:图像的缩放空间。 从底部到顶部观察增加的模糊。
Original: 未经过滤的图像
。
Scale 1: 使用高斯滤波器sigma等于1,
来平滑
。
Scale 2: 使用高斯滤波器
来平滑
。
Scale 3: 使用高斯滤波器
来平滑
。
它被称为空间,因为可以将其视为三维空间,第三维对应于具有变量
的细到粗轴。
在较粗的尺度(较大的
值)下,更容易找到整体的轮廓和区域,但结构有时会被其他不同的结构所污染。 通常对较粗糙的尺度进行下采样以获得更紧凑的尺度空间表示,从而形成金字塔,参见图5.附录I.2中的代码。
(在这种情况下,分别对每个颜色通道执行滤波,一次用于红色,一次用于绿色,一次用于蓝色图像)
对于许多计算,知道强度景观如何在每个像素处“定向”也是有用的。 具体来说,我们想知道小像素邻域的每个图像像素的“表面斜率”。 这用梯度图像表示,将在3.3节中解释。
3.1 Scale Space
通过将图像与在小邻域中平均的二维滤波器进行卷积来使图像模糊。 在上一节的介绍性示例中,我们仅使用了求和函数,但通常使用高斯滤波器完成图像模糊,就像我们滤波面部轮廓一样(第2.2节)。 这里高斯滤波器是一个二维函数,看起来如图9的前四个补丁所示。它表示为
,其中x和y是图像轴,其中
是调节模糊量的标准差- 也称为平滑参数。 在信号处理的语言中,将模糊处理表示为卷积,由星号
表示。有人说,图像
由滤波器
进行卷积
最低0.47元/天 解锁文章
1612

被折叠的 条评论
为什么被折叠?



