Computer Vision(C. Rasche)计算机视觉 论文解读(3 Image Processing I: Scale Space, Pyramid and Gradient Image)

目录

3 Image Processing I: Scale Space, Pyramid and Gradient Image

3.1 Scale Space

3.2 Pyramid

3.3 Gradient Image

3.4 Exercises


3 Image Processing I: Scale Space, Pyramid and Gradient Image

对于许多计算机视觉任务,模糊图像并分别分析这些不同的模糊是有用的。 我们已经在上一节中介绍了模糊图像的概念,但是在这里我们重复产生这种模糊,增加的滤波器尺寸到达所谓的比例空间,如图4所示。这个空间将在随后的部分介绍3.1。 然后我们介绍图像金字塔,第3.2节,粗略地说 - 缩小了尺度空间。

 图4:图像的缩放空间。 从底部到顶部观察增加的模糊。

Original: 未经过滤的图像Io

Scale 1: 使用高斯滤波器sigma等于1,\sigma = 1来平滑Io

Scale 2: 使用高斯滤波器\sigma = 2来平滑Io

Scale 3: 使用高斯滤波器\sigma = 3来平滑Io

它被称为空间,因为可以将其视为三维空间,第三维对应于具有变量\sigma的细到粗轴。
在较粗的尺度(较大的\sigma值)下,更容易找到整体的轮廓和区域,但结构有时会被其他不同的结构所污染。 通常对较粗糙的尺度进行下采样以获得更紧凑的尺度空间表示,从而形成金字塔,参见图5.附录I.2中的代码。

(在这种情况下,分别对每个颜色通道执行滤波,一次用于红色,一次用于绿色,一次用于蓝色图像)

对于许多计算,知道强度景观如何在每个像素处“定向”也是有用的。 具体来说,我们想知道小像素邻域的每个图像像素的“表面斜率”。 这用梯度图像表示,将在3.3节中解释。

3.1 Scale Space

通过将图像与在小邻域中平均的二维滤波器进行卷积来使图像模糊。 在上一节的介绍性示例中,我们仅使用了求和函数,但通常使用高斯滤波器完成图像模糊,就像我们滤波面部轮廓一样(第2.2节)。 这里高斯滤波器是一个二维函数,看起来如图9的前四个补丁所示。它表示为g\left ( x,y,\sigma \right ),其中x和y是图像轴,其中\sigma是调节模糊量的标准差- 也称为平滑参数。 在信号处理的语言中,将模糊处理表示为卷积,由星号*表示。有人说,图像I_{o}\left ( x, y\right )由滤波器g\left ( x,y,\sigma \right )进行卷积

                                              

Algorithms for Image Processing and Computer Vision By 作者: J. R. Parker ISBN-10 书号: 0470643854 ISBN-13 书号: 9780470643853 Edition 版本: 2 出版日期: 2010-12-21 pages 页数: (504 ) $95 A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It’s an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists who require highly specialized image processing. Algorithms now exist for a wide variety of sophisticated image processing applications required by software engineers and developers, advanced programmers, graphics programmers, scientists, and related specialists This bestselling book has been completely updated to include the latest algorithms, including 2D vision methods in content-based searches, details on modern classifier methods, and graphics cards used as image processing computational aids Saves hours of mathematical calculating by using distributed processing and GPU programming, and gives non-mathematicians the shortcuts needed to program relatively sophisticated applications. Algorithms for Image Processing and Computer Vision, 2nd Edition provides the tools to speed development of image processing applications. Chapter 1 Practical Aspects of a Vision System-Image Display,Input/0ut… Chapter 2 Edge-Detection Techniques Chapter 3 Digital Morphology Chapter 4 Grey-Level Segmentation Chapter 5 Texture and Color Chapter 6 Thiming Chapter 7 Image Restoration Chapter 8 Classification Chapter 9 Symbol Reconition Chapter 10 Content-Based Search-Finding Images by Exanple Chapter 11 Hi gh-Performance Computing for Vision and Image Processing
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值