二分答案
每个牛棚拆成两个点i和i'
源点向每个牛棚i连一条容量为初始数量的边
每个牛棚i向能走到(最短路小于二分的答案)的牛棚j'连一条容量为inf的边
每个牛棚i'向汇点连一条容量为容量的边
每个牛棚拆成两个点i和i'
源点向每个牛棚i连一条容量为初始数量的边
每个牛棚i向能走到(最短路小于二分的答案)的牛棚j'连一条容量为inf的边
每个牛棚i'向汇点连一条容量为容量的边
最大流
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<iostream>
#define maxn 210
#define maxm 100010
#define inf 1000000000
using namespace std;
long long f[maxn][maxn];
int a[maxn],b[maxn];
int head[1100],to[maxm],c[maxm],next[maxm],q[1010],d[1010];
int n,m,num,s,t,ans,sum;
void addedge(int x,int y,int z)
{
num++;to[num]=y;c[num]=z;next[num]=head[x];head[x]=num;
num++;to[num]=x;c[num]=0;next[num]=head[y];head[y]=num;
}
bool bfs()
{
memset(d,-1,sizeof(d));
int l=0,r=1;
q[1]=s;d[s]=0;
while (l<r)
{
int x=q[++l];
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==-1)
{
d[to[p]]=d[x]+1;
q[++r]=to[p];
}
}
if (d[t]==-1) return 0; else return 1;
}
int find(int x,int low)
{
if (x==t || low==0) return low;
int totflow=0;
for (int p=head[x];p;p=next[p])
if (c[p] && d[to[p]]==d[x]+1)
{
int a=find(to[p],min(low,c[p]));
c[p]-=a;c[p^1]+=a;
low-=a;totflow+=a;
if (low==0) return totflow;
}
if (low) d[x]=-1;
return totflow;
}
void Dinic()
{
while (bfs()) ans+=find(s,inf);
}
bool check(long long x)
{
memset(head,0,sizeof(head));
num=1;s=0;t=2*n+1;ans=0;
for (int i=1;i<=n;i++) addedge(s,i,a[i]),addedge(n+i,t,b[i]);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
if (f[i][j]<=x) addedge(i,j+n,inf);
Dinic();
if (ans==sum) return 1; else return 0;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) {scanf("%d%d",&a[i],&b[i]);sum+=a[i];}
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]=inf*200ll;
for (int i=1;i<=m;i++)
{
int x,y;
long long z;
scanf("%d%d%lld",&x,&y,&z);
f[x][y]=f[y][x]=min(f[x][y],z);
}
for (int i=1;i<=n;i++) f[i][i]=0;
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
long long l=0,r=inf*200ll-1,ans=-1;
while (l<=r)
{
long long mid=(l+r)/2;
if (check(mid)) ans=mid,r=mid-1; else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}