【bzoj4197】[Noi2015]寿司晚宴 dp

因为每个数只有一个大于根号n的质因子,所以我们把每个数拆成一个大于根号n的质因子乘以一个数的形式,对于大于根号n的质因子相同的数,我们放到一起处理
dp[0/1][i][x][y]表示A/B选了当前的大质数,现在枚举到具有当前大质数的第i个数,之前A选中的集合为x,B选中的集合为y的方案数
dp[0/1][0][x][y]=f[i-1][x][y]
dp[0][i][x][y]=dp[0][i-1][x][y]+dp[0][i-1][x-S][y]
dp[1][i][x][y]=dp[1][i-1][x][y]+dp[1][i-1][x][y-S]
f[i][x][y]表示考虑了前i个大质数,A选中的集合为x,B选中的集合为y的方案数
f[i][x][y]=dp[0][num[i]][x][y]+dp[1][num[i]][x][y]-f[i-1][x][y]
由于不选当前大质数的方案被计算了2次,所以要-1
空间可用01背包的方法优化掉一维,但要注意枚举顺序

注:这道题指数只需要存到19,因为23*29>500

能想出这道题的人都好厉害呀


#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>

using namespace std;

struct yts
{
	int p,a;
}q[510];

bool cmp(yts x,yts y)
{
	return x.p<y.p;
}

int pri[10]={2,3,5,7,11,13,17,19};
int dp[2][1<<8][1<<8],f[1<<8][1<<8];
int n,m,mod,tot;

void calc(int x)
{
	tot++;
	for (int i=0;i<=7;i++)
	  if (x%pri[i]==0)
	  {
	  	while (x%pri[i]==0) x/=pri[i];
	  	q[tot].a|=(1<<i);
	  }
	q[tot].p=x;
}

int main()
{
	scanf("%d%d",&n,&mod);
	for (int i=2;i<=n;i++) calc(i);
	sort(q+1,q+tot+1,cmp);
	f[0][0]=1;
	for (int i=1;i<=tot;i++)
	{
		if (q[i].p==1 || q[i].p!=q[i-1].p)
		  for (int x=0;x<(1<<8);x++)
		    for (int y=0;y<(1<<8);y++)
		      dp[0][x][y]=dp[1][x][y]=f[x][y];
		for (int x=(1<<8)-1;x>=0;x--)
		  for (int y=(1<<8)-1;y>=0;y--)
		  {
		  	if ((y&q[i].a)==0) dp[0][x|q[i].a][y]=(dp[0][x|q[i].a][y]+dp[0][x][y])%mod;
		  	if ((x&q[i].a)==0) dp[1][x][y|q[i].a]=(dp[1][x][y|q[i].a]+dp[1][x][y])%mod;
		  }
		if (q[i].p==1 || i==n || q[i].p!=q[i+1].p)
		  for (int x=0;x<(1<<8);x++)
		    for (int y=0;y<(1<<8);y++)
		      f[x][y]=((long long)dp[0][x][y]+dp[1][x][y]-f[x][y]+mod)%mod;
	}
	int ans=0;
	for (int i=0;i<(1<<8);i++)
	  for (int j=0;j<(1<<8);j++)
	    if ((i&j)==0) ans=(ans+f[i][j])%mod;
	printf("%d\n",ans);
	return 0;
}


  • 0
    点赞
  • 1
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:编程工作室 设计师:CSDN官方博客 返回首页
评论

打赏作者

qingdaobaibai

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值