HDU 3274 City Planning

题意:给你一组数n  m  n的意思是有多少个村庄,并且给你n-1个关系,m的意思是要你连通的村庄。现在要你求出连通m个村庄所花费的钱

思路:题目一看数据,就像是要你去求最小生成树的子数,但是仔细审题会发现一句“Meanwhile you should use the least money. You may suppose that the initial transportation network makes up a tree.”好吧,原来给你的网络图是一棵树,这样题目就直接简单地太多了,直接DFS搜出这条路来

关键还在于要开一个数组来记录你的初始点所在的边,这样我只需要枚举给出的m个边就可以了

AC代码:

 

#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int maxn=2005;
int n,m,root,sum,s,vis[maxn],head[maxn];    //head记录U为起点的边,vis标记所求的边
struct node
{
    int u,v,w,next; //next 记录以u为起点的下一条边
} Edge[maxn];
void addEdge(int u,int v,int w)
{
    Edge[s].u=u,Edge[s].v=v,Edge[s].w=w,Edge[s].next=head[u];
    head[u]=s++;    //s的功能在于记录你以u为起点的边在哪里
}
void dfs(int u,int fa)
{
    int i,j;
    for(i=head[u];i!=-1;i=Edge[i].next)
    {
        int v=Edge[i].v;
        if(v==fa)continue;  //如果再次找到了你的起点,那么就可以停止此次的搜索了,此路不通
        dfs(v,u);
        if(vis[v])
        {
             sum+=Edge[i].w;
       //      printf("sum= %d\n",sum);
             vis[u]=1;
        }
    }

}
int main()
{
    int i,j,a,b,c;
    while(scanf("%d%d",&n,&m)!=EOF)
    {

        sum=s=0;
        memset(vis,0,sizeof(vis));
        memset(head,-1,sizeof(head));
        for(i=1; i<=m; i++)
        {
            scanf("%d",&root);
            vis[root]=1;
        }
        for(i=1; i<n; i++)
        {
            scanf("%d%d%d",&a,&b,&c);
            addEdge(a,b,c);
            addEdge(b,a,c);
        }
      //  printf("开始:\n");
        dfs(root,-1);
        printf("%d\n",sum);
    }
    return 0;
}

 

 

 

 

 

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值