排序:
默认
按更新时间
按访问量

狗种类识别

需要安装anaconda目的对100种狗进行识别,本文为简化,只对2种狗进行识别。数据组织有100种狗 E:\bd\train\train\train 下面是所有训练集图片 E:\bd\train\val\test1 下是所有验证集图片 E:\bd\train\data_train_imag...

2017-12-17 19:12:51

阅读数:2642

评论数:2

C#---聚类

using System; using System.Collections.Generic; using System.Linq; using System.Text; using Wellcomm.BLL.Geometric;namespace Wellcomm.BLL.InternalInt...

2017-09-07 17:42:28

阅读数:518

评论数:0

深度学习笔记---基于动量的梯度下降

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-31 13:29:02

阅读数:935

评论数:0

深度学习笔记---ReL解决梯度消失

参考 彭亮, 深度学习视频

2017-07-30 20:22:14

阅读数:234

评论数:0

深度学习笔记---梯度消失、梯度激增

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-30 19:36:02

阅读数:259

评论数:0

深度学习笔记----softmax

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-29 13:39:35

阅读数:183

评论数:0

深度学习笔记---权重初始化

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-28 19:42:49

阅读数:157

评论数:0

深度学习笔记---规范化

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-28 13:49:17

阅读数:196

评论数:0

深度学习笔记---交叉熵代价函数

参考 Michael Nielsen. 神经网络与深度学习[M]

2017-07-27 21:12:57

阅读数:307

评论数:0

深度学习笔记---反向传播

反向传播

2017-07-27 20:28:14

阅读数:203

评论数:0

深度学习笔记---梯度下降

目标:对于一个代价函数,寻找其最小值,即最低点。 方法:x减去当前梯度,即斜率,然后再得到y。 解释:如果当前点是A点,则斜率是正数,减去后x变小,y变小。 如果当前点是B点,则斜率是负数,减去后x变大,y变小。参考 Michael Nielsen. 神经网络与深度学习...

2017-07-26 21:02:45

阅读数:286

评论数:0

Bayes公式解释

参考 杨淑莹. 图像模式识别VC++技术实现[M].

2017-07-24 19:19:27

阅读数:273

评论数:0

matlab---RBF

data = importdata('rbf.txt'); %输入文件,只有一列数据,共312个,前252个作为训练 nTrain = 252; %训练数据个数 nTest = 60; %测试数据个数 n = 5; ...

2016-12-18 16:50:15

阅读数:1882

评论数:0

N-gram

#include "iostream" #include "string.h" #include "string" #include "map" #include "fstream" #includ...

2016-11-27 15:48:58

阅读数:399

评论数:0

决策树ID3 C++实现

/* 思想: 每次从数据集中根据最大信息增益选取一个最好特征,将数据进行划分,每次划分都会消耗一个特征, 使得特征越来越少,当所有数据集都是同一类,或者消耗完所有特征时,划分结束。 信息熵: Entropy(D) = -sum( p_i * log_2(p_i) )...

2016-11-10 09:53:16

阅读数:1104

评论数:10

AdaBoost C++实现

/* 思想: 每个弱分类器的分类结果乘以各自的alpha,相加后得到最终分类结果。 alpha根据每个弱分类器的分类错误率算出,alpha = 0.5 * ln( (1-errorRate) / errorRate ) 本算法中的若分类器为单决策树,在构建单决策树时,会根据...

2016-11-09 18:17:45

阅读数:2311

评论数:0

Apriori关联分析 C++实现

Apriori算法:如果小的项集比较频繁,那么由它组成的大的项集也可能是频繁的; 如果小的项集不频繁,那么由它组成的大的项集必然不频繁。 所以,可以先排除小的不频繁项集,减少搜索空间。#include "iostream" #include "vector&quo...

2016-10-26 17:41:43

阅读数:409

评论数:1

RL强化学习 C++实现

详细过程见: http://blog.csdn.net/u013405574/article/details/50903987#include "iostream" #include "vector" #include "string.h&quo...

2016-10-21 16:34:12

阅读数:1080

评论数:3

SVM的详细推导

SVM推导:

2016-10-18 11:59:04

阅读数:350

评论数:0

LSTM神经网络的详细推导及C++实现

LSTM隐层神经元结构: LSTM隐层神经元详细结构: //让程序自己学会是否需要进位,从而学会加法#include "iostream" #include "math.h" #include "stdlib.h" #...

2016-10-12 23:53:55

阅读数:15699

评论数:26

提示
确定要删除当前文章?
取消 删除
关闭
关闭