Help Jimmy
Time Limit: 1000MS Memory Limit: 10000K
Description
“Help Jimmy” 是在下图所示的场景上完成的游戏。
场景中包括多个长度和高度各不相同的平台。地面是最低的平台,高度为零,长度无限。
Jimmy老鼠在时刻0从高于所有平台的某处开始下落,它的下落速度始终为1米/秒。当Jimmy落到某个平台上时,游戏者选择让它向左还是向右跑,它跑动的速度也是1米/秒。当Jimmy跑到平台的边缘时,开始继续下落。Jimmy每次下落的高度不能超过MAX米,不然就会摔死,游戏也会结束。
设计一个程序,计算Jimmy到底地面时可能的最早时间。
Input
第一行是测试数据的组数t(0 <= t <= 20)。每组测试数据的第一行是四个整数N,X,Y,MAX,用空格分隔。N是平台的数目(不包括地面),X和Y是Jimmy开始下落的位置的横竖坐标,MAX是一次下落的最大高度。接下来的N行每行描述一个平台,包括三个整数,X1[i],X2[i]和H[i]。H[i]表示平台的高度,X1[i]和X2[i]表示平台左右端点的横坐标。1 <= N <= 1000,-20000 <= X, X1[i], X2[i] <= 20000,0 < H[i] < Y <= 20000(i = 1..N)。所有坐标的单位都是米。
Jimmy的大小和平台的厚度均忽略不计。如果Jimmy恰好落在某个平台的边缘,被视为落在平台上。所有的平台均不重叠或相连。测试数据保证问题一定有解。
Output
对输入的每组测试数据,输出一个整数,Jimmy到底地面时可能的最早时间。
Sample Input
1
3 8 17 20
0 10 8
0 10 13
4 14 3
Sample Output
23
Source
POJ Monthly–2004.05.15 CEOI 2000
思路: 思路太暴力以至于没想出来。。。
参考:AC_Von
首先dp[i][2]足以表示状态,意为到达平台i两端点的最短路。
剩下的就是枚举了。。。
注意,地面没有被当做平台参与运算,因此最后要加一层跳到地面的判断。
代码如下:
/*
* ID: j.sure.1
* PROG:
* LANG: C++
*/
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <iostream>
#define PB push_back
#define LL long long
using namespace std;
const int INF = 0x3f3f3f3f;
const double eps = 1e-8;
/****************************************/
const int N = 1005;
int n, lim, sx, sy;
struct Node {
int x[2], h;
bool operator < (const Node &rhs) const {
return h > rhs.h;
}
}a[N];
int dp[N][2];
//只能向左走或者向右走
int solve()
{
memset(dp, 0x3f, sizeof(dp));
dp[0][0] = dp[0][1] = 0;
for(int i = 1; i <= n; i++) {
for(int j = 0; j < i; j++) {
for(int d = 0; d < 2; d++) {
if(a[i].x[0] <= a[j].x[d] && a[i].x[1] >= a[j].x[d]) {
if(a[j].h - a[i].h <= lim) {
bool ok = true;
for(int k = j+1; k < i; k++) {
if(a[k].x[0] <= a[j].x[d] && a[k].x[1] >= a[j].x[d]) {
ok = false;
break;
}
}//中间没有阻挡物
if(ok && dp[j][d] != INF) {
int tmp = dp[j][d] + a[j].h - a[i].h + abs(a[j].x[d] - a[i].x[0]);
dp[i][0] = min(dp[i][0], tmp);
tmp = dp[j][d] + a[j].h - a[i].h + abs(a[j].x[d] - a[i].x[1]);
dp[i][1] = min(dp[i][1], tmp);
}
}
}
}
}
}
printf("dp[n][0] is %d, dp[n][1] is %d\n", dp[n][0], dp[n][1]);
//dp数组保存了最短路
int ans = INF;
for(int i = 0; i <= n; i++) {
if(a[i].h <= lim) {
for(int d = 0; d < 2; d++) {
bool ok = true;
for(int k = i+1; k <= n; k++) {
if(a[k].x[0] <= a[i].x[d] && a[k].x[1] >= a[i].x[d]) {
ok = false;
break;
}
}
if(ok) {
ans = min(ans, dp[i][d] + a[i].h);
}
}
}
}
return ans;
}
int main()
{
#ifdef J_Sure
freopen("000.in", "r", stdin);
//freopen("999.out", "w", stdout);
#endif
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d", &n, &sx, &sy, &lim);
a[0].x[0] = a[0].x[1] = sx;
a[0].h = sy;
for(int i = 1; i <= n; i++) {
scanf("%d%d%d", &a[i].x[0], &a[i].x[1], &a[i].h);
}
sort(a, a+n+1);
int ans = solve();
printf("%d\n", ans);
}
return 0;
}