迭代法求平方根

这篇博客介绍了如何使用迭代法求平方根,通过C++代码展示了迭代过程。首先设定初始值x0为a的一半,然后利用迭代公式x1 = (x0 + a/x0) / 2不断更新,直到x0和x1的差值小于1e-6。迭代法是求解方程近似根的一种有效方法,通过不断逼近来获取精确结果。
摘要由CSDN通过智能技术生成
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
    double a,x0,x1;
    cin>>a;
    if(a<0)
        cout<<"错误"<<endl;
    else
    {
        x0=a/2;
        x1=(x0+a/x0)/2;
        do
        {
            x0=x1;
            x1=(x0+a/x0)/2;
        }
        while(fabs(x0-x1)>=1e-6);
    }
    cout<<x0<<endl;
    return 0;
}

求平方根的迭代公式:x1=1/2*(x0+a/x0)。
算法:1.先自定一个初值x0,作为a的平方根值,在我们的程序中取a/2作为a的初值;利用迭代公式求出一个x1。此值与真正的a的平方根值相比,误差很大。
⒉把新求得的x1代入x0中,准备用此新的x0再去求出一个新的x1.
⒊利用迭代公式再求出一个新的x1的值,也就是用新的x0又求出一个新的平方根值x1,此值将更趋近于真正的平方根值。
⒋比较前后两次求得的平方根值x0和x1,如果它们的差值小于我们指定的值,即达到我们要求的精度,则认为x1就是a的平方根值,去执行步骤5;否则执行步骤2,即循环进行迭代。
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值