Stanford Named Entity Recognizer (NER)是斯坦福大学自然语言研究小组发布的成果之一,
其主页是:http://nlp.stanford.edu/software/CRF-NER.shtml
Stanford NER 是一个Java实现的命名实体识别(以下简称NER)程序。NER将文本中的实体按类标记出来,例如人名,公司名,地区,基因和蛋白质的名字等。
NER基于一个训练而得的Model工作,用于训练的数据即大量人工标记好的文本,理论上用于训练的数据量越大,NER的识别效果就越好。
斯坦福小组给出了三个训练好的Model:
- Location, Person, Organization
- Location, Person, Organization, Misc
- Time, Location, Organization, Person, Money, Percent, Date
但不幸的是,这三个Model都不能被扩展,用于训练的数据也不公开,所以想要一个适应自己需求的Model我们只能从头训练。
下面我们就用一个简单的例子来摸索一下如何训练一个新的Model并用它尝试识别几个简单的句子。
首先从主页下载Stanford Named Entity Recognizer:http://nlp.stanford.edu/software/stanford-ner-2013-11-12.zip 解压即可。
文中提到的训练数据、配置文件、Model和完整工程可从网盘下载:http://pan.baidu.com/s/1xNAqD
准备训练数据
这是本例所使用的训练数据,包含标记好的两句话:Today is Friday. Tomorrow is 11/30.
如图,句子中的每个单词独立成行,Tab后跟该单词的类别,默认为O。例中,我们标记了Friday为WEEK,11/30为DATE,其余均为默认。
训练获得Model
官方说虽然所有的参数都可以通过命令行的方式指定,但更推荐用配置文件的方式。