【算法题解】45. N叉树的层序遍历

文章介绍了如何解决N叉树的层序遍历问题,采用的方法是利用队列进行广度优先搜索。首先从根节点开始,按层次遍历,每层的节点先入队,然后出队并记录答案,同时将子节点入队。Java和Go代码示例展示了具体的实现过程。时间复杂度为O(N),空间复杂度为O(N),其中N为树的节点数。
摘要由CSDN通过智能技术生成

这是一道 中等难度 的题

https://leetcode.cn/problems/n-ary-tree-level-order-traversal/

题目

给定一个 N 叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。

树的序列化输入是用层序遍历,每组子节点都由 null 值分隔(参见示例)。

示例 1:

输入:root = [1,null,3,2,4,null,5,6] 
输出:[[1],[3,2,4],[5,6]] 

示例 2:

输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14] 
输出:[
  [1],
  [2,3,4,5],
  [6,7,8,9,10],
  [11,12,13],
  [14]
]

提示:

  • 树的高度不会超过 1000 1000 1000
  • 树的节点总数在 [ 0 , 1 0 4 ] [0, 10^4] [0,104] 之间

题解

树的层序遍历有一个固定的解题思路:

使用队列,一层一层的入队,然后再一层一层的按照入队顺序出队。

首先入队的是根结点,然后根节点出队,记录答案后将其子节点从左到右依次入队。

然后子节点再依次出队,出队时依然是记录答案后再将出队了的这个节点的子节点依次入队,就这样一层一层走下去。直到队列为空的时候,即遍历完成。

需要注意的是:题目要求每一层返回一个数组,所以我们需要知道每一层的节点个数(假如为 count ),那么取完 count 个节点后,再取就是下一层的节点了,就需要新开一个数组记录了。

以题目给定的示例一为例。

第二层节点是 324;共 3 个,所以取完这 3 个节点后,剩下的就是第三层了。

Java 代码为例:

while(!queue.isEmpty()){
    // 当前层的节点数
    int count = queue.size();

    // 当前这层入队的节点全部出队
    for(int i = 0; i < count; i++){
        // TODO 1.当前这层入队的节点一个一个的出队
        // TODO 2.记录答案
        // TODO 3.子节点依次入对列
    }
}

当队列不空的时候就一直循环取值,即外层 while 循环。

计算当前层有多少个节点,记为 count 。然后依次将这 count 个节点取出来,即内层 for 循环,这样 for 循环结束后队列中剩余的节点刚好就是下一层的所有节点,然后进入下一次 while 循环。

Java 代码实现
/*
// Definition for a Node.
class Node {
    public int val;
    public List<Node> children;

    public Node() {}

    public Node(int _val) {
        val = _val;
    }

    public Node(int _val, List<Node> _children) {
        val = _val;
        children = _children;
    }
};
*/

class Solution {
    public List<List<Integer>> levelOrder(Node root) {

        List<List<Integer>> ans = new ArrayList<>();
        if(root == null){
            return ans;
        }
        Queue<Node> queue = new LinkedList<>();
        queue.offer(root);

        while(!queue.isEmpty()){
            // 当前层的节点数
            int count = queue.size();
            List<Integer> depthAns = new ArrayList<>();
            for(int i = 0; i < count; i++){
                Node temp = queue.poll();
                depthAns.add(temp.val);

                // 子节点以此入队
                List<Node> children = temp.children;
                if(children != null){
                    for(Node c : children){
                        queue.offer(c);
                    }
                }
            }
            ans.add(depthAns);
        }

        return ans;
    }
}
Go 代码实现

Go 代码实现的时候,内层循环可以将 count 个节点取完后,再统一更新切片 queue

Go语言没有队列这一数据结构,可以使用切片模拟。

/**
 * Definition for a Node.
 * type Node struct {
 *     Val int
 *     Children []*Node
 * }
 */

func levelOrder(root *Node) (ans [][]int) {
    if root == nil {
        return
    }

    queue := []*Node{root}
    // 每一层的节点个数
    count := len(queue)
    for count > 0 {
        // 每一层的答案;
        levelAns := make([]int, count)
        for i := 0; i < count; i++ {
            out := queue[i]
            levelAns[i] = out.Val

            // 子节点入队
            children := out.Children
            if children != nil {
                for _, c := range children {
                    queue = append(queue, c)
                }
            }
        }

        queue = queue[count:]
        ans = append(ans, levelAns)
        // 计算下一层节点的个数
        count = len(queue)
        
    }
    
    return
    
}
复杂度分析

时间复杂度: O ( N ) O(N) O(N), N 为树中的节点个数,每个节点都有入队和出队两个操作。

空间复杂度: O ( N ) O(N) O(N)N 为树中的节点个数,空间复杂度取决于队列的大小,最大为 N

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

i余数

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值