这是一道 中等难度 的题
https://leetcode.cn/problems/n-ary-tree-level-order-traversal/
题目
给定一个 N
叉树,返回其节点值的层序遍历。(即从左到右,逐层遍历)。
树的序列化输入是用层序遍历,每组子节点都由 null
值分隔(参见示例)。
示例 1:
输入:root = [1,null,3,2,4,null,5,6]
输出:[[1],[3,2,4],[5,6]]
示例 2:
输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:[
[1],
[2,3,4,5],
[6,7,8,9,10],
[11,12,13],
[14]
]
提示:
- 树的高度不会超过 1000 1000 1000
- 树的节点总数在 [ 0 , 1 0 4 ] [0, 10^4] [0,104] 之间
题解
树的层序遍历有一个固定的解题思路:
使用队列,一层一层的入队,然后再一层一层的按照入队顺序出队。
首先入队的是根结点,然后根节点出队,记录答案后将其子节点从左到右依次入队。
然后子节点再依次出队,出队时依然是记录答案后再将出队了的这个节点的子节点依次入队,就这样一层一层走下去。直到队列为空的时候,即遍历完成。
需要注意的是:题目要求每一层返回一个数组,所以我们需要知道每一层的节点个数(假如为 count
),那么取完 count
个节点后,再取就是下一层的节点了,就需要新开一个数组记录了。
以题目给定的示例一为例。
第二层节点是 3
,2
,4
;共 3
个,所以取完这 3
个节点后,剩下的就是第三层了。
以 Java 代码为例:
while(!queue.isEmpty()){
// 当前层的节点数
int count = queue.size();
// 当前这层入队的节点全部出队
for(int i = 0; i < count; i++){
// TODO 1.当前这层入队的节点一个一个的出队
// TODO 2.记录答案
// TODO 3.子节点依次入对列
}
}
当队列不空的时候就一直循环取值,即外层 while
循环。
计算当前层有多少个节点,记为 count
。然后依次将这 count
个节点取出来,即内层 for
循环,这样 for
循环结束后队列中剩余的节点刚好就是下一层的所有节点,然后进入下一次 while
循环。
Java 代码实现
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public List<List<Integer>> levelOrder(Node root) {
List<List<Integer>> ans = new ArrayList<>();
if(root == null){
return ans;
}
Queue<Node> queue = new LinkedList<>();
queue.offer(root);
while(!queue.isEmpty()){
// 当前层的节点数
int count = queue.size();
List<Integer> depthAns = new ArrayList<>();
for(int i = 0; i < count; i++){
Node temp = queue.poll();
depthAns.add(temp.val);
// 子节点以此入队
List<Node> children = temp.children;
if(children != null){
for(Node c : children){
queue.offer(c);
}
}
}
ans.add(depthAns);
}
return ans;
}
}
Go 代码实现
Go 代码实现的时候,内层循环可以将 count
个节点取完后,再统一更新切片 queue
。
Go语言没有队列这一数据结构,可以使用切片模拟。
/**
* Definition for a Node.
* type Node struct {
* Val int
* Children []*Node
* }
*/
func levelOrder(root *Node) (ans [][]int) {
if root == nil {
return
}
queue := []*Node{root}
// 每一层的节点个数
count := len(queue)
for count > 0 {
// 每一层的答案;
levelAns := make([]int, count)
for i := 0; i < count; i++ {
out := queue[i]
levelAns[i] = out.Val
// 子节点入队
children := out.Children
if children != nil {
for _, c := range children {
queue = append(queue, c)
}
}
}
queue = queue[count:]
ans = append(ans, levelAns)
// 计算下一层节点的个数
count = len(queue)
}
return
}
复杂度分析
时间复杂度:
O
(
N
)
O(N)
O(N), N
为树中的节点个数,每个节点都有入队和出队两个操作。
空间复杂度:
O
(
N
)
O(N)
O(N),N
为树中的节点个数,空间复杂度取决于队列的大小,最大为 N
。