语音识别CTC之数据准备
一、简介
CTC是一种端到端的神经网络训练方法,在语音识别领域应用非常广泛,和传统的语音识别HMM相比,CTC省略了数据对齐,特征选取的过程。传统的HMM在训练神经网络之前需要选择特定的语音特征,比如FBANK、MFCC。而CTC则直接将语音转到频域即可使用,传统的HMM在训练之前需要对数据进行帧对齐,对齐的过程首先要进行HMM-GMM的聚类,并且较小的建模粒度需要做状态的绑定,因为较大的建模粒度效果往往不好。最后使用GMM或者DNN对齐的标签也不是很准确。而端到端的CTC技术正好解决了这个问题,建模粒度更大,HMM-DNN模型用一个DNN模型替代,不需要对齐标签,仅需要整句话的标签即可,语料充足的情况下效果比传统的HMM方法要好。
tensorflow原生支持CTC目标函数,网络结构搭建简单,是一个不错的深度学习工具,我们通过tensorflow训练CTC模型,在3000小时语音数据的基础上,效果达到了字准95%,句准91%的效果,下面我们首先介绍训练过程的数据准备阶段。
二、数据格式
输入为kaldi提取的ark文件对应的scp文件,标签文件,输出为准备好的tfrecord文件。
scp文件格式如下:
0000000000000000000001 3000h.a

最低0.47元/天 解锁文章
2289

被折叠的 条评论
为什么被折叠?



