大家好,我是若川。我倾力持续组织了一年多源码共读,感兴趣的可以加我微信 lxchuan12 参与。之前送过N次书,可以点此查看回馈粉丝,现在又和博文视点合作再次争取了几本书,具体送书规则看文末。
在过去的客户端开发时代,工程师主要面对工程问题,如性能优化、信息提取加工、动画特效等。随着复杂业务场景的出现,处理模式复杂、场景无法穷尽、输入/输出错综复杂等问题变得困难。传统的技术手段显得捉襟见肘,需要更多的技术支持。
从2014年ConvNetJS诞生到现在,前端开发领域涌现出了一批可以在浏览器端运行神经网络、执行分类和识别等任务的前端机器学习、深度学习框架。
特别是大语言模型如ChatGPT等的出现,人工智能开始在端上发挥更重要的作用。利用人工智能技术给前端开发带来诸多帮助:
解决复杂问题:大语言模型等人工智能技术可以解决模式复杂、场景无法穷尽的问题。AI可以提供精准的信息提取、数据加工,帮助开发人员更高效地应对业务挑战。
低网络延迟:在客户端使用AI能力,可以避免与服务端的通信延迟,提供更快速的响应。这对于实时性要求高的应用非常重要,如实时聊天、语音识别等。
减少对服务端的依赖:通过在前端进行AI推理,可以减轻服务端的负担,降低服务端压力。同时,数据隐私和安全也更易控制,用户数据不必在网络中传输。
极致的用户体验:借助AI技术,前端应用可以提供更个性化、智能化的用户体验。从个性化推荐到智能化交互,AI使应用更贴近用户需求,增强用户满意度。
开发效率提升:基于前端推理引擎,开发人员可以将AI模型无缝嵌入应用,避免从零开始构建模型。这大大缩短了开发周期,提高了开发效率。
应对新兴需求:AI技术的快速发展使得前端能够更好地应对新兴业务需求,如图像识别、自然语言处理等,拓展应用领域。
Paddle.js是一个运行在浏览器中的开源深度学习框架。作为一款前端推理引擎,与TensorFlow、PyTorch和PaddlePaddle 等成熟的框架一样,Paddle.js不仅能基于已有模型在业务中快速集成,还满足二次开发要求——引入新的模型、添加新的算子。
这背后涉及的技术栈和开发流程烦冗复杂:
该如何接入媒体流?
如何下载模型文件?
如何生成神经网络?
如何执行后处理任务?
……
这些零散的问题可能成为前端工程师接入AI能力的阻碍,需要给出最佳实践和自动化的解决方案。为此,三位百度架构师特撰写了《Web智能化:AI引用与开发指南》。

本书将以Paddle.js为例,展现如何通过前端推理引擎充分调用浏览器的开放能力来实现AI的应用开发。
本书内容包括三大部分:前端与AI、引入新模型和Web AI进阶。本书重点讲解模型开发的“全链路”,从模型供给到业务实现,串联起前端AI开发的整个流程。
读者可以根据定制化的需求利用Paddle.js前端推理引擎完成算子开发、精度对齐、业务场景接入等具体的研发工作。
专属五折优惠,到手价50,快快抢购吧!


专属五折优惠,到手价50,快快抢购吧!

福利时间
文末福利
小伙伴们,可以在本文留言区留言任意内容~抽奖规则:在我的公众号结合留言内容随机抽1位,获得本书包邮送。
截止时间:9月18日(周一)中午12点,可能延后,以置顶留言为准。
其他几本,在我的社群等送出(福利倾斜)。
中奖小伙伴,我会联系兑奖,一般来说,如果当天联系不上视为作废。也可以提前扫码加我微信 lxchuan12 以防失联。或者发送源码两字参与源码共读。
782

被折叠的 条评论
为什么被折叠?



