支持向量回归模型SVR

1. SVM回归模型的损失函数度量

    回顾下我们前面SVM分类模型中,我们的目标函数是让 12||w||22 12||w||22最小,同时让各个训练集中的点尽量远离自己类别一边的的支持向量,即 yi(wϕ(xi)+b)1 yi(w∙ϕ(xi)+b)≥1。如果是加入一个松弛变量 ξi0 ξi≥0,则目标函数是 12||w||22+Ci=1mξi 12||w||22+C∑i=1mξi,对应的约束条件变成: yi(wϕ(xi)+b)1ξi yi(w∙ϕ(xi)+b)≥1−ξi

    但是我们现在是回归模型,优化目标函数可以继续和SVM分类模型保持一致为 12||w||22 12||w||22,但是约束条件呢?不可能是让各个训练集中的点尽量远离自己类别一边的的支持向量,因为我们是回归模型,没有类别。对于回归模型,我们的目标是让训练集中的每个点 (xi,yi) (xi,yi),尽量拟合到一个线性模型 yi =wϕ(xi)+b yi =w∙ϕ(xi)+b。对于一般的回归模型,我们是用均方差作为损失函数,但是SVM不是这样定义损失函数的。

    SVM需要我们定义一个常量 ϵ>0 ϵ>0,对于某一个点 (xi,yi) (xi,yi),如果 |yiwϕ(xi)b|ϵ |yi−w∙ϕ(xi)−b|≤ϵ,则完全没有损失,如果 |yiwϕ(xi)b|>ϵ |yi−w∙ϕ(xi)−b|>ϵ,则对应的损失为 |yiwϕ(xi)b|ϵ |yi−w∙ϕ(xi)−b|−ϵ,这个均方差损失函数不同,如果是均方差,那么只要 yiwϕ(xi)b0 yi−w∙ϕ(xi)−b≠0,那么就会有损失。

    如下图所示,在蓝色条带里面的点都是没有损失的,但是外面的点的是有损失的,损失大小为红色线的长度。

    总结下,我们的SVM回归模型的损失函数度量为:

err(xi,yi)={0|yiwϕ(xi)+b|ϵ|yiwϕ(xi)b|ϵ|yiwϕ(xi)b|>ϵ err(xi,yi)={0|yi−w∙ϕ(xi)−b|≤ϵ|yi−w∙ϕ(xi)+b|−ϵ|yi−w∙ϕ(xi)−b|>ϵ

2. SVM回归模型的目标函数的原始形式

    上一节我们已经得到了我们的损失函数的度量,现在可以可以定义我们的目标函数如下:

min12||w||22s.t|yiwϕ(xi)b|ϵ(i=1,2,...m) min12||w||22s.t|yi−w∙ϕ(xi)−b|≤ϵ(i=1,2,...m)

    和SVM分类模型相似,回归模型也可以对每个样本 (xi,yi) (xi,yi)加入松弛变量 ξi0 ξi≥0, 但是由于我们这里用的是绝对值,实际上是两个不等式,也就是说两边都需要松弛变量,我们定义为 ξi,ξi ξi∨,ξi∧, 则我们SVM回归模型的损失函数度量在加入松弛变量之后变为:

min12||w||22+Ci=1m(ξi+ξi) min12||w||22+C∑i=1m(ξi∨+ξi∧)
s.t.ϵξiyiwϕ(xi)bϵ+ξi s.t.−ϵ−ξi∨≤yi−w∙ϕ(xi)−b≤ϵ+ξi∧
ξi0,ξi0(i=1,2,...,m) ξi∨≥0,ξi∧≥0(i=1,2,...,m)

    依然和SVM分类模型相似,我们可以用拉格朗日函数将目标优化函数变成无约束的形式,也就是拉格朗日函数的原始形式如下:

L(w,b,α,α,ξi,ξi,μ,μ)=12||w||22+Ci=1m(ξi+ξi)+i=1mα(ϵξiyi+wϕ(xi)+b)+i=1mα(yiwϕ(xi)bϵξi)i=1mμξii=1mμξi L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)=12||w||22+C∑i=1m(ξi∨+ξi∧)+∑i=1mα∨(−ϵ−ξi∨−yi+w∙ϕ(xi)+b)+∑i=1mα∧(yi−w∙ϕ(xi)−b−ϵ−ξi∧)−∑i=1mμ∨ξi∨−∑i=1mμ∧ξi∧

    其中  μ0,μ0,αi0,αi0 μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0,均为拉格朗日系数。

3. SVM回归模型的目标函数的对偶形式

    上一节我们讲到了SVM回归模型的目标函数的原始形式,我们的目标是

minw,b,ξi,ξimaxμ0,μ0,αi0,αi0L(w,b,α,α,ξi,ξi,μ,μ) min⏟w,b,ξi∨,ξi∧max⏟μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)

    和SVM分类模型一样,这个优化目标也满足KKT条件,也就是说,我们可以通过拉格朗日对偶将我们的优化问题转化为等价的对偶问题来求解如下:

maxμ0,μ0,αi0,αi0minw,b,ξi,ξiL(w,b,α,α,ξi,ξi,μ,μ) max⏟μ∨≥0,μ∧≥0,αi∨≥0,αi∧≥0min⏟w,b,ξi∨,ξi∧L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)

    我们可以先求优化函数对于 w,b,ξi,ξi w,b,ξi∨,ξi∧的极小值, 接着再求拉格朗日乘子 α,α,μ,μ α∨,α∧,μ∨,μ∧的极大值。

    首先我们来求优化函数对于 w,b,ξi,ξi w,b,ξi∨,ξi∧的极小值,这个可以通过求偏导数求得:

Lw=0w=i=1m(αiαi)ϕ(xi) ∂L∂w=0⇒w=∑i=1m(αi∧−αi∨)ϕ(xi)
Lb=0i=1m(αiαi)=0 ∂L∂b=0⇒∑i=1m(αi∧−αi∨)=0
Lξi=0Cαμ=0 ∂L∂ξi∨=0⇒C−α∨−μ∨=0
Lξi=0Cαμ=0 ∂L∂ξi∧=0⇒C−α∧−μ∧=0
 

    好了,我们可以把上面4个式子带入 L(w,b,α,α,ξi,ξi,μ,μ) L(w,b,α∨,α∧,ξi∨,ξi∧,μ∨,μ∧)去消去 w,b,ξi,ξi w,b,ξi∨,ξi∧了。

    看似很复杂,其实消除过程和系列第一篇第二篇文章类似,由于式子实在是冗长,这里我就不写出推导过程了,最终得到的对偶形式为:

maxα,αi=1m(ϵyi)αi+(ϵ+yi)αi)12i=1,j=1m(αiαi)(αjαj)Kij max⏟α∨,α∧∑i=1m(ϵ−yi)αi∧+(ϵ+yi)αi∨)−12∑i=1,j=1m(αi∧−αi∨)(αj∧−αj∨)Kij
s.t.i=1m(αiαi)=0 s.t.∑i=1m(αi∧−αi∨)=0
0<αi<C(i=1,2,...m) 0<αi∨<C(i=1,2,...m)
0<αi<C(i=1,2,...m) 0<αi∧<C(i=1,2,...m)

     对目标函数取负号,求最小值可以得到和SVM分类模型类似的求极小值的目标函数如下:

minα,α12i=1,j=1m(αiαi)(αjαj)Kiji=1m(ϵyi)αi+(ϵ+yi)αi min⏟α∨,α∧12∑i=1,j=1m(αi∧−αi∨)(αj∧−αj∨)Kij−∑i=1m(ϵ−yi)αi∧+(ϵ+yi)αi∨
s.t.i=1m(αiαi)=0 s.t.∑i=1m(αi∧−αi∨)=0
0<αi<C(i=1,2,...m) 0<αi∨<C(i=1,2,...m)
0<αi<C(i=1,2,...m) 0<αi∧<C(i=1,2,...m)

    对于这个目标函数,我们依然可以用第四篇讲到的SMO算法来求出对应的 α,α α∨,α∧,进而求出我们的回归模型系数 w,b w,b

4. SVM回归模型系数的稀疏性

    在SVM分类模型中,我们的KKT条件的对偶互补条件为:  αi(yi(wϕ(xi)+b)1)=0 αi∗(yi(w∙ϕ(xi)+b)−1)=0,而在回归模型中,我们的对偶互补条件类似如下:

αi(ϵ+ξi+yiwϕ(xi)b)=0 αi∨(ϵ+ξi∨+yi−w∙ϕ(xi)−b)=0
αi(ϵ+ξiyi+wϕ(xi)+b)=0 αi∧(ϵ+ξi∧−yi+w∙ϕ(xi)+b)=0

    根据松弛变量定义条件,如果 |yiwϕ(xi)b|<ϵ |yi−w∙ϕ(xi)−b|<ϵ,我们有 ξi=0,ξi=0 ξi∨=0,ξi∧=0,此时 ϵ+ξi+yiwϕ(xi)b0,ϵ+ξiyi+wϕ(xi)+b0 ϵ+ξi∨+yi−w∙ϕ(xi)−b≠0,ϵ+ξi∧−yi+w∙ϕ(xi)+b≠0这样要满足对偶互补条件,只有 αi=0,αi=0 αi∨=0,αi∧=0

    我们定义样本系数系数

βi=αiαi βi=αi∧−αi∨

    根据上面 w w的计算式 w=i=1m(αiαi)ϕ(xi) w=∑i=1m(αi∧−αi∨)ϕ(xi),我们发现此时 βi=0 βi=0,也就是说 w w不受这些在误差范围内的点的影响。对于在边界上或者在边界外的点, αi0,αi0 αi∨≠0,αi∧≠0,此时 βi0 βi≠0

5. SVM 算法小结

    这个系列终于写完了,这里按惯例SVM 算法做一个总结。SVM算法是一个很优秀的算法,在集成学习和神经网络之类的算法没有表现出优越性能前,SVM基本占据了分类模型的统治地位。目前则是在大数据时代的大样本背景下,SVM由于其在大样本时超级大的计算量,热度有所下降,但是仍然是一个常用的机器学习算法。

    SVM算法的主要优点有:

    1) 解决高维特征的分类问题和回归问题很有效,在特征维度大于样本数时依然有很好的效果。

    2) 仅仅使用一部分支持向量来做超平面的决策,无需依赖全部数据。

    3) 有大量的核函数可以使用,从而可以很灵活的来解决各种非线性的分类回归问题。

    4)样本量不是海量数据的时候,分类准确率高,泛化能力强。

    SVM算法的主要缺点有:

    1) 如果特征维度远远大于样本数,则SVM表现一般。

    2) SVM在样本量非常大,核函数映射维度非常高时,计算量过大,不太适合使用。

    3)非线性问题的核函数的选择没有通用标准,难以选择一个合适的核函数。

    4)SVM对缺失数据敏感。

   


  • 1
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
支持向量机回归(Support Vector Regression, SVR)是一种基于支持向量机(Support Vector Machine, SVM)算法的非线性回归方法。与传统的线性回归方法不同,SVR可以处理非线性问题,并且对于异常值具有较强的鲁棒性。 SVR的核心思想是通过在特征向量空间中找到一个超平面,使得训练样本点与该超平面之间的最大间隔最小。对于回归问题,SVR的目标是在允许一定的误差范围内,找到一个边界使得训练样本与预测结果尽可能接近。 SVR的优势在于可以使用不同的核函数来处理不同类型的数据,并且具有较强的泛化能力。常用的核函数有线性核、多项式核和径向基函数核等。通过使用核函数,SVR可以将低维空间中的非线性问题映射到高维空间中进行处理。 SVR的训练过程主要包括参数选择和模型训练两个步骤。参数选择可以通过交叉验证等方法进行,选取合适的核函数和正则化参数。模型训练则是通过优化算法求解,使得目标函数最小化。 在实际应用中,SVR在金融、生物科学、天气预测等领域有着广泛的应用。它可以处理非线性和高维数据,并且在某些情况下能够取得较好的预测效果。然而,SVR也存在一些问题,例如对大规模数据训练时间较长,参数选择需要一定的经验等。 总之,支持向量机回归(SVR)是一种在非线性回归问题中具有较好性能的方法。通过选择合适的核函数和正则化参数,SVR可以处理非线性问题,并在某些情况下取得较好的预测效果。然而,使用SVR时需要注意参数选择和训练时间的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值