NYOJ104最大矩阵和

最大和

描述

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。 
例子:
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
其最大子矩阵为:

9 2 
-4 1 
-1 8 
其元素总和为15。 

输入
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
输出矩阵的最大子矩阵的元素之和。
样例输入
1
4 4
0 -2 -7 0 
9 2 -6 2 
-4 1 -4 1 
-1 8 0 -2 
样例输出
15

思路:转化成一维数组,求一维数组最长子序列即可


源代码:


/**
 *转化成一维数组,求一维数组最长子序列即可
 */
#include<iostream>
#include<string.h>
using namespace std;
int a[101][101],s[101],ma[101];
int maxSum(int s[],int ma[],int m);//求最大子序列和
int main()
{
    int t,n,m;
    cin>>t;
    while(t--){
        cin>>n>>m;
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                cin>>a[i][j];
            }
        }

        int max=-1000000000;//注意序列的最小值
        for(int i=0;i<n;i++){
            memset(s,0,sizeof(s));
            for(int j=i;j<n;j++){
                int sum=0;
                for(int k=0;k<m;k++){
                    s[k]+=a[j][k];//转化为一维数组
                }
                sum=maxSum(s,ma,m);
                //cout<<maxSum(s,ma,m)<<endl;
                if(sum>max) max=sum;
            }
        }
        cout<<max<<endl;
    }
    return 0;
}
int maxSum(int s[],int ma[],int m){//最大子序列的和
    ma[0]=s[0];
    for(int i=1;i<m;i++){
       if(ma[i-1]>=0) ma[i]=ma[i-1]+s[i];
       else ma[i]=s[i];
    }
    int sum=ma[0];
    for(int i=1;i<m;i++){
        if(sum<ma[i]) sum=ma[i];
    }
    return sum;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值