最大和
-
描述
-
给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:9 2
-4 1
-1 8
其元素总和为15。-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
- 输出矩阵的最大子矩阵的元素之和。 样例输入
-
1 4 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
思路:转化成一维数组,求一维数组最长子序列即可
源代码:
/**
*转化成一维数组,求一维数组最长子序列即可
*/
#include<iostream>
#include<string.h>
using namespace std;
int a[101][101],s[101],ma[101];
int maxSum(int s[],int ma[],int m);//求最大子序列和
int main()
{
int t,n,m;
cin>>t;
while(t--){
cin>>n>>m;
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
cin>>a[i][j];
}
}
int max=-1000000000;//注意序列的最小值
for(int i=0;i<n;i++){
memset(s,0,sizeof(s));
for(int j=i;j<n;j++){
int sum=0;
for(int k=0;k<m;k++){
s[k]+=a[j][k];//转化为一维数组
}
sum=maxSum(s,ma,m);
//cout<<maxSum(s,ma,m)<<endl;
if(sum>max) max=sum;
}
}
cout<<max<<endl;
}
return 0;
}
int maxSum(int s[],int ma[],int m){//最大子序列的和
ma[0]=s[0];
for(int i=1;i<m;i++){
if(ma[i-1]>=0) ma[i]=ma[i-1]+s[i];
else ma[i]=s[i];
}
int sum=ma[0];
for(int i=1;i<m;i++){
if(sum<ma[i]) sum=ma[i];
}
return sum;
}