题目大意:
给出一个数字上三角形,找到从上走到下的最大权值,(在上三角矩阵中)你只能向下走后者向右下走。
例:
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
最大权值为30:
路径为: 7(1,1)--->3(2,1)--->8(3,1)--->7(4,2)--->5(5,2); 圆括号里表示下标
题目分析:典型的动态规划问题 动态转移方程为 :
dp[i,j]=max(dp[i-1,j]+a[i,j],dp[i-1,j+1]+a[i,j]); a[i,j] 表示当前元素的权值。技巧:可以将二维数组适当开的大一些,不必考虑边界值。
优化空间的技巧:注意到dp[i,j]的值之和i-1行有关系,可以用一个变量保存dp[i-1,x]的最优值,优化空间到O(n);
此处没有给出代码实现,读者可自己完成。
http://vjudge.net/problem/viewProblem.action?id=10754
源代码实现:
#include<iostream>
using namespace std;
int a[101][101],dp[101][101];
int main()
{
int n;
while(cin>>n){
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++){
cin>>a[i][j];
}
}
for(int i=n;i>0;i--){//从下往上dp(只能上后左上)
for(int j=0;j<i;j++){
if(i==n) {
dp[i][j]=a[i][j];
//cout<<dp[i][j]<<" ";
}
else{
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1]);
dp[i][j]+=a[i][j];
//cout<<dp[i][j]<<" ";
}
}
}
cout<<dp[1][0]<<endl;
}
return 0;
}