题目描述
http://acm.nyist.net/JudgeOnline/problem.php?pid=370
-
有一个长度为N的整数序列,序列里面的数是两两不同的,现在要在里面找一个波动序列,这个序列越长越好。
比如有波动序列{a0,a1,a2…an-1},则a0> a1 < a2 > a3 < …
-
输入
-
第一行输入一个数T,代表有T个任务,T不大于50。
对于每个任务,输入格式为
N a0 a1 a2 … aN-1
其中N<=30000,测试数据保证序列的数两两不同。
输出
- 对于每个任务,输出最长的波动序列长度 样例输入
-
4
-
5 1 2 3 4 5
-
5 5 4 3 2 1
-
5 5 1 4 2 3
-
5 2 4 1 3 5
样例输出
-
1
-
2
-
5
-
3
-
第一行输入一个数T,代表有T个任务,T不大于50。
题目分析:
刚开始以为是DP问题的最长上升子序列问题,但是也不能用O(n*n),看了题才明白此题不是要求波动序列连续,但是题目中没有表示清楚,这样的话我们可以从头到尾进行比较了,如果满足波动就加1,下移继续比较,但是注意题目的样例,应该先计算>,在计算<,可以用ok进行标记,ok=0计算>,ok=1计算<,记录最大值即可。
AC代码:
/**
*@xiaoran
*刚看到的时候,一位是类似于最长上升子序列的dp,但是时间过不去,
*主要是题目没有说清楚,我以为序列必须连续呢,看了解题之后,才知道
*序列可以不连续,这题意我也是醉了
*注意要根据题目所给,先求大于再求小于
*/
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<cstdlib>
#include<cctype>
#include<cmath>
#define LL long long
using namespace std;
int a[30003];
int main()
{
int n,t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
int res=0;
int now=a[0],ok=0;
for(int i=1;i<n;i++){
if(ok==0&&now>a[i]){//ok=0判断大于
res++;
ok=1;//交替判断
}
if(ok==1&&now<a[i]){//ok=0判断小于
res++;
ok=0;//交替判断
}
now=a[i];
}
printf("%d\n",res+1);
}
return 0;
}