逆着递推求解 一个软件有s个子系统,会产生n种bug 某人一天发现一个bug,这个bug属于一个子系统,属于一个分类 每个bug属于某个子系统的概率是1/s,属于某种分类的概率是1/n 问发现n种bug,每个子系统都发现bug的天数的期望。 求解: dp[i][j]表示已经找到i种bug,j个系统的bug,达到目标状态的天数的期望 dp[n][s]=0;要求的答案是dp[0][0]; dp[i][j]可以转化成以下四种状态: dp[i][j],发现一个bug属于已经有的i个分类和j个系统。概率为(i/n)*(j/s); dp[i][j+1],发现一个bug属于已有的分类,不属于已有的系统.概率为 (i/n)*(1-j/s); dp[i+1][j],发现一个bug属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(j/s); dp[i+1][j+1],发现一个bug不属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(1-j/s);
这一步的期望=(上一步的期望+上一步de得分)/k#include<algorithm> #include<string.h> using namespace std; const int MAXN=1010; double dp[MAXN][MAXN]; int main() { int n,s; while(scanf("%d%d",&n,&s)!=EOF) { dp[n][s]=0; for(int i=n;i>=0;i--) for(int j=s;j>=0;j--) { if(i==n&&j==s)continue; dp[i][j]=(i*(s-j)*dp[i][j+1]+(n-i)*j*dp[i+1][j]+(n-i)*(s-j)*dp[i+1][j+1]+n*s)/(n*s-i*j); } printf("%.4lf\n",dp[0][0]); } return 0; }
poj 2096——基础期望dp
最新推荐文章于 2023-08-08 14:59:34 发布