poj 2096——基础期望dp

17 篇文章 0 订阅

逆着递推求解    一个软件有s个子系统,会产生n种bug    某人一天发现一个bug,这个bug属于一个子系统,属于一个分类    每个bug属于某个子系统的概率是1/s,属于某种分类的概率是1/n    问发现n种bug,每个子系统都发现bug的天数的期望。 求解:          dp[i][j]表示已经找到i种bug,j个系统的bug,达到目标状态的天数的期望          dp[n][s]=0;要求的答案是dp[0][0];          dp[i][j]可以转化成以下四种状态:               dp[i][j],发现一个bug属于已经有的i个分类和j个系统。概率为(i/n)*(j/s);               dp[i][j+1],发现一个bug属于已有的分类,不属于已有的系统.概率为 (i/n)*(1-j/s);               dp[i+1][j],发现一个bug属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(j/s);               dp[i+1][j+1],发现一个bug不属于已有的系统,不属于已有的分类,概率为 (1-i/n)*(1-j/s);

这一步的期望=(上一步的期望+上一步de得分)/k
#include<algorithm>
#include<string.h>
using namespace std;
const int MAXN=1010;
double dp[MAXN][MAXN];

int main()
{
    int n,s;
    while(scanf("%d%d",&n,&s)!=EOF)
    {
        dp[n][s]=0;
        for(int i=n;i>=0;i--)
          for(int j=s;j>=0;j--)
          {
              if(i==n&&j==s)continue;
              dp[i][j]=(i*(s-j)*dp[i][j+1]+(n-i)*j*dp[i+1][j]+(n-i)*(s-j)*dp[i+1][j+1]+n*s)/(n*s-i*j);
          }
        printf("%.4lf\n",dp[0][0]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值