推荐系统深度学习篇-AFM模型介绍(3)

AFM模型是针对NFM的改进,通过Attention机制区分特征交叉的有效性,降低噪声影响。论文发表于IJCAI-17,模型结构包括Pair-wise Interaction Layer和Attention Network,并在关键层应用Dropout和L2正则化以提升泛化能力。本文提供代码示例展示AFM模型的实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、AFM模型简介

AFM模型是17年发表在IJCAI-17上的一篇论文,它是NFM模型的一个改进, 在传统FM模型中,使用二阶交叉特征得到非线性表达能力,但是不是所有的特征交叉都会有预测能力,很多无用的特征交叉加入后反而会相当于加入了噪声。为了区别对待不同的特征,引入了Attention机制。

论文地址为:https://www.ijcai.org/proceedings/2017/0435.pdf

其结构图为

在这里插入图片描述
其中attention network可形式化为:
在这里插入图片描述
AFM模型的公式为:
在这里插入图片描述
需要注意的是:

为了增强泛化能力,

  1. 在Pair-wise Interaction Layer的输出使用Dropout

  2. 在Attention Network中使用L2正则化

二、代码展示

1、<vi,vj>xi,xj

def calc_pi_embedding(cate_num, emb_part):
    """
     # Emb_part[:,i,:] 假设Emb_part是m*n*t,取得[:,i,:]是第二维的数据也就是m*i*t的数据
            # 如[[[1,2,3,4,5],[3,4,5,6,7]],[[1,3,3,4,5],[3,6,5,6,7]],[[1,7,3,4,5],[3,4,5,6,1]]]
            # 取[:,0,:]
            # 结果为[[1, 2, 3, 4, 5]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值