tensorflow2.0 模型训练耗时优化

1、将train阶段包含的词典映射操作放在数据处理处,而不是放在模型中进行lookup

在大规模训练中,我们通常会对离散型的变量进行embbeding处理,但原始特征需要映射为index,即f.lookup.StaticHashTable操作,通常我们将这个过程放在模型中处理,可以优化为,在traning阶段,利用tensoflow 的dataset的pipline,将该部分进行前置处理,而serving阶段,依然放在模型中处理;
这个过程通常会将模型的训练耗时缩短为原来的2/3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值