赢麻了!苹果最终选择了阿里巴巴的通义大模型

   据一位直接了解相关决定的人士透露,苹果公司最近开始与中国互联网和电子商务巨头阿里巴巴集团合作,在中国推出人工智能(AI)功能。 此举是苹果战略的一部分,旨在通过提供更具吸引力的软件功能来应对在中国的销量下降问题,同时应对华为和 Vivo 等国内品牌的竞争。

这位人士还表示,苹果和阿里巴巴已经将他们共同开发的中国 AI 功能提交给中国网信监管部门审批,这表明双方的合作已经取得了显著进展。

去年,苹果开始在美国和其他国家的 iPhone 等设备上推出 AI 功能(苹果称之为 Apple Intelligence)。这些功能结合了苹果自己的 AI 模型和 OpenAI 的 ChatGPT,用于处理苹果模型无法应对的用户请求。

具体功能包括改进 iPhone 的照片搜索、通知和文本重写能力。然而,我们知道,苹果在中国的AI 能力,不能直接使用OpenAI等未备案产品的服务。

据两位知情人士透露,从 2023 年开始,苹果测试了来自中国知名 AI 开发商的不同 AI 模型,并在去年选择了百度作为主要合作伙伴。但由于百度为 Apple Intelligence 开发的模型进展未能达到苹果的标准,合作遇到了障碍。

因此,近几个月来,苹果开始考虑其他选择,评估了腾讯、字节跳动、阿里巴巴以及 DeepSeek 开发的模型。据一位知情人士透露,苹果最终放弃了 DeepSeek 的模型,因为 DeepSeek 团队缺乏支持像苹果这样大客户所需的人力和经验。

目前尚不清楚苹果是否完全排除了使用百度模型的可能性,或者百度的模型是否会成为未来中国 iPhone 用户可以选择的为 Apple Intelligence 提供支持的另一种选项。

对于苹果来说,在中国找到合适的 AI 合作伙伴以遏制市场份额损失的风险很高。中国是苹果在美国以外的第二大市场,在截至 12 月的季度中占销售额的 15%。但中国市场的收入已经连续两年多下滑,在 12 月季度下滑了 11%,在 2024 财年下滑了 7.7%,在 2023 年下滑了 2.2%,因为中国消费者转向了华为和小米等本地手机品牌。中国市场的销量下降正在损害苹果的整体业绩。

苹果 CEO 蒂姆·库克(Tim Cook)在上个月的财报电话会议上表示,12 月季度在中国的销量受到了 iPhone 未提供 Apple Intelligence 功能的影响。华为是苹果在中国最强劲的竞争对手,自去年 5 月以来,华为一直在其一些旗舰机型中加入生成式 AI 功能,如图像生成和校对工具。

苹果的一位发言人拒绝置评。百度、腾讯、字节跳动和 DeepSeek 也未回应置评请求。

苹果的目标是找到一个能够基于中国用户的个人数据理解他们请求的中国合作伙伴。据三位熟悉苹果想法的人士透露,当评估中国公司开发的 AI 模型时,苹果对这些模型理解用户意图并将真实世界的手机使用情况纳入生成回复的能力感到不满意。

阿里巴巴作为电子商务巨头,拥有比百度更多的中国消费者个人数据,如用户的购物和支付习惯。据一位直接了解苹果决定的人士透露,阿里巴巴的 AI 模型已经在这些数据集上进行了训练,因此可以帮助 Apple Intelligence 为中国用户提供更定制化的服务。据一位接近阿里巴巴的人士透露,由于中国的数据隐私法,阿里巴巴不会与苹果共享其个性化数据集。

阿里巴巴是中国国内 AI 行业的领导者之一,与 DeepSeek 和 TikTok 所有者字节跳动并列。阿里巴巴开发了自己的大型语言模型,称为通义千问(Tongyi Qianwen)。其云部门是中国最大的云服务提供商,在向企业销售 AI 服务方面具有优势。但在为消费者开发流行的 AI 应用程序方面,阿里巴巴落后于字节跳动,因为字节跳动的豆包聊天机器人应用程序的用户远多于阿里巴巴的竞争应用。

6dc738420ca1f653fd4730ae97a023ab.jpeg

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值