POJ 1664 放苹果

注:开始看这道题没看明白,百度题解。这篇还蛮详细,第一种解释不大懂,看来第二种就恍然大悟了!

转载。。。一起分享!


Description

把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。

Input

第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。

Output

对输入的每组数据M和N,用一行输出相应的K。

Sample Input

1 7 3

Sample Output

8
 
自己想了半天,什么排列组合之类的,后来去搜题解,才知道是用递归…… 强大啊……
个人感觉递归好神奇啊,反正就是一次一次调用然后结果就出来了,不用去想它具体是怎么实现的。
 
 
这题的思想是找递归关系,我们不妨令f(m,n)表示m个苹果放到n个盘子里有多少种放法,下面对不同的情况给予讨论:
(1):当盘子数为1的时候,只有一种放法就是把所有苹果放到一个盘子里。
(2):当苹果数为1的时候,也只有一种放法,注意题目中说明,盘子之间并无顺序,所以不管这个苹果放在哪个盘子里,结果都算一个。
(3):当m<n时,因为此时最多只能放到m个盘子中去(一个里放一个),实际上就相当于把m个苹果放到m个盘子里一样,也就是f(m,m);
(4):当m==n时,此时分两种情况讨论,一种是一个盘子里放一个,只是一种,第二种是,至少有一个盘子里不放苹果这就相当于是f(m,m-1);
(5):当m>n时,也分两种情况讨论,一种是至少有一个盘子里不放苹果,这样子就相当于f(m,n-1),第二种是,先取出n个苹果一个盘子里放一个,再将剩下的m-n个苹果放到n个盘子里去,即f(m-n,n);
综上所述:
得到递归表达式:
f(m,n)=1 当 m=1或n=1;
f(m,n)=f(m,m) 当m<n;
f(m,n)=1+f(m,m-1) 当m=n;
f(m,n)=f(m-n,n)+f(m,n-1);
 
                        //  solution   NO. 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值